Identification of quantitative trait loci underlying lutein content in soybean seeds across multiple environments

2017 ◽  
Vol 155 (8) ◽  
pp. 1263-1271 ◽  
Author(s):  
W. L. TENG ◽  
W. J. FENG ◽  
J. Y. ZHANG ◽  
N. XIA ◽  
J. GUO ◽  
...  

SUMMARYLutein benefits human health significantly, including that of the eyes, skin and heart. Therefore, increasing lutein content in soybean seeds is an important objective for breeding programmes. However, no information about soybean lutein-related quantitative trait loci (QTL) has been reported, as of 2016. The aim of the present study was to identify QTLs underlying the lutein content in soybean seeds. A population including 129 recombinant inbred lines was developed from the cross between ‘Dongnong46’ (lutein 13·10 µg/g) and ‘L-100’ (lutein 23·96 µg/g), which significantly differed in seed lutein contents. This population was grown in ten environments including Harbin in 2012, 2013, 2014 and 2015; Hulan in 2013, 2014 and 2015; and Acheng in 2013, 2014 and 2015. A total of 213 simple sequence repeat markers were used to construct the genetic linkage map, which covered approximately 3623·39 cM, with an average distance of 17·01 cM between markers. In the present study, eight QTLs associated with lutein content were found initially, which could explain 1·01–19·66% of the observed phenotypic variation in ten different tested environments. The phenotypic contribution of qLU-1 (located near BARC-Satt588 on chromosome 9 (Chr 9; linkage group (LG) K)) was >10% across seven tested environments, while qLU-2 (located near Satt192 of Chr 12 (LG H)) and qLU-3 (located near Satt353 of Chr12 (LGH)) could explain 5–10% of the observed phenotypic variation in more than seven environments, respectively. qLU-5, qLU-6, qLU-7 and qLU-8 could be detected in more than four environments. These eight QTLs were novel, and have considerable potential value for marker-assistant selection of higher lutein content in soybean lines.

2017 ◽  
Vol 156 (1) ◽  
pp. 3-12 ◽  
Author(s):  
W. L. Teng ◽  
M. N. Sui ◽  
W. Li ◽  
D. P. Wu ◽  
X. Zhao ◽  
...  

AbstractSeed shape (SS) affects the yield and appearance of soybean seeds significantly. However, little detailed information has been reported about the quantitative trait loci (QTL) affecting SS, especially SS components such as seed length (SL), seed width (SW) and seed thickness (ST), and their mutual ratios of length-to-weight (SLW), length-to-thickness (SLT) and weight-to-thickness (SWT). The aim of the present study was to identify QTL underlying SS components using 129 recombinant inbred lines derived from a cross between Dongnong46 and L-100. Phenotypic data were collected from this population after it was grown across nine environments. A total of 213 simple sequence repeat markers were used to construct the genetic linkage map, which covered approximately 3623·39 cM, with an average distance of 17·01 cM between markers. Five QTL were identified as being associated with SL, five with SW, three with ST, four with SLW, two with SLT and three with SWT. These QTL could explain 1·46–22·16% of the phenotypic variation in SS component traits. Three QTL were identified in more than six tested environments three for SL, two for SW, one for ST, two for SLW and one for SLT. These QTL have great potential value for marker-assistant selection of SS in soybean seeds.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sumandeep K. Bazzer ◽  
Larry C. Purcell

Abstract A consistent risk for soybean (Glycine max L.) production is the impact of drought on growth and yield. Canopy temperature (CT) is an indirect measure of transpiration rate and stomatal conductance and may be valuable in distinguishing differences among genotypes in response to drought. The objective of this study was to map quantitative trait loci (QTLs) associated with CT using thermal infrared imaging in a population of recombinant inbred lines developed from a cross between KS4895 and Jackson. Heritability of CT was 35% when estimated across environments. QTL analysis identified 11 loci for CT distributed on eight chromosomes that individually explained between 4.6 and 12.3% of the phenotypic variation. The locus on Gm11 was identified in two individual environments and across environments and explained the highest proportion of phenotypic variation (9.3% to 11.5%) in CT. Several of these CT loci coincided with the genomic regions from previous studies associated with canopy wilting, canopy temperature, water use efficiency, and other morpho-physiological traits related with drought tolerance. Candidate genes with biological function related to transpiration, root development, and signal transduction underlie these putative CT loci. These genomic regions may be important resources in soybean breeding programs to improve tolerance to drought.


2009 ◽  
Vol 99 (9) ◽  
pp. 1078-1084 ◽  
Author(s):  
G. Liu ◽  
Y. Jia ◽  
F. J. Correa-Victoria ◽  
G. A. Prado ◽  
K. M. Yeater ◽  
...  

Rice sheath blight (ShB), caused by the soilborne pathogen Rhizoctonia solani, annually causes severe losses in yield and quality in many rice production areas worldwide. Jasmine 85 is an indica cultivar that has proven to have a high level of resistance to this pathogen. The objective of this study was to determine the ability of controlled environment inoculation assays to detect ShB resistance quantitative trait loci (QTLs) in a cross derived from the susceptible cv. Lemont and the resistant cv. Jasmine 85. The disease reactions of 250 F5 recombinant inbred lines (RILs) were measured on the seedlings inoculated using microchamber and mist-chamber assays under greenhouse conditions. In total, 10 ShB-QTLs were identified on chromosomes 1, 2, 3, 5, 6, and 9 using these two methods. The microchamber method identified four of five new ShB-QTLs, one on each of chromosomes 1, 3, 5, and 6. Both microchamber and mist-chamber methods identified two ShB-QTLs, qShB1 and qShB9-2. Four of the ShB-QTLs or ShB-QTL regions identified on chromosomes 2, 3, and 9 were previously reported in the literature. The major ShB-QTL qShB9-2, which cosegregated with simple sequence repeat (SSR) marker RM245 on chromosome 9, contributed to 24.3 and 27.2% of total phenotypic variation in ShB using microchamber and mistchamber assays, respectively. qShB9-2, a plant-stage-independent QTL, was also verified in nine haplotypes of 10 resistant Lemont/Jasmine 85 RILs using haplotype analysis. These results suggest that multiple ShB-QTLs are involved in ShB resistance and that microchamber and mist-chamber methods are effective for detecting plant-stage-independent QTLs. Furthermore, two SSR markers, RM215 and RM245, are robust markers and can be used in marker-assisted breeding programs to improve ShB resistance.


2010 ◽  
Vol 100 (5) ◽  
pp. 468-473 ◽  
Author(s):  
Xiao-Chun Sun ◽  
William Bockus ◽  
Guihua Bai

Tan spot, caused by Pyrenophora tritici-repentis, is an economically important foliar disease of wheat worldwide. Eight races of the pathogen have been characterized on the basis of their ability to cause necrosis or chlorosis in a set of differential wheat lines. Race 1 produces two host-selective toxins, Ptr ToxA and Ptr ToxC, that induce necrosis and chlorosis, respectively, on leaves of sensitive wheat genotypes. A population of recombinant inbred lines was developed from a cross between Chinese landrace Wangshuibai (resistant) and Chinese breeding line Ning7840 (highly susceptible) to identify chromosome regions harboring quantitative trait loci (QTL) or genes for tan spot resistance. Plants were inoculated at the four-leaf stage in a greenhouse and percent leaf area diseased was scored 7 days after inoculation. Two QTL for resistance to race 1 were mapped to the short arms of chromosomes 1A and 2B in the population. The QTL on 1AS, designated as QTs.ksu-1AS, showed a major effect and accounted for 39% of the phenotypic variation; the QTL on 2BS, designated as QTs.ksu-2BS, explained 4% of the phenotypic variation for resistance. A toxin infiltration experiment demonstrated that both parents were insensitive to Ptr ToxA, suggesting that the population was most likely segregating for reaction to chlorosis, not necrosis. The markers closely linked to the QTL should be useful for marker-assisted selection in wheat-breeding programs.


2002 ◽  
Vol 2002 ◽  
pp. 66-66
Author(s):  
N. Ball ◽  
M.J. Haskell ◽  
J.L. Williams ◽  
J.M. Deag

Farm animals show individual variation in their behavioural responses to handling and management systems on farms. These behavioural responses are presumed to reflect underlying temperament traits such as fear or aggression. Information about the location of genes that influence temperament traits could be used in selective breeding programmes to improve animal welfare, as selection for desirable behavioural responses would increase the ability of animals to cope with stressors encountered on farms. The aims of this study were to obtain reliable temperament measurements in cattle using behavioural tests, and to use this data to localise the genes (quantitative trait loci) that are involved in such traits.Behavioural data obtained in temperament tests must be shown to reflect underlying traits by demonstrating intra-animal repeatability, inter-animal variability and validity. The objectives of this experiment were i) to carry out four behaviour tests on a group of heifers, and examine the repeatability, variability and validity of the results obtained; ii) to correlate the behavioural data with genotyping data from a large number of heifers to look for associations between behavioural phenotypes and genetic markers. Associations localise quantitative trait loci (QTLs), or regions of the genome, that are involved in these traits.


Author(s):  
Pardeep Kumar ◽  
Mukesh Choudhary ◽  
B. S. Jat ◽  
M. C. Dagla ◽  
Vishal Singh ◽  
...  

Abstract This chapter focuses on target traits for drought stress, progress in mapping for drought tolerance-associated genes/QTLs identification and expression studies and introgression strategies followed by the possibilities of integrating the concept of speed breeding in maize drought breeding programmes for better utilization of wild relatives.


Sign in / Sign up

Export Citation Format

Share Document