The regulator of G-protein signalling protein mediates D-glucose-induced stomatal closure via triggering hydrogen peroxide and nitric oxide production in Arabidopsis

2018 ◽  
Vol 45 (5) ◽  
pp. 509 ◽  
Author(s):  
Shumei Hei ◽  
Zhifeng Liu ◽  
Aixia Huang ◽  
Xiaoping She

2-Deoxy-D-glucose, 3-O-methyl-D-glucose and D-mannose are all non-metabolisable D-glucose analogues. Among these, 2-deoxy-D-glucose and D-mannose are substrates for hexokinase (HXK). D-sorbitol and D-mannitol are reduced forms of D-glucose and are typically used as comparable osmotic solutes. Similar to 2-deoxy-D-glucose and D-mannose, D-glucose induced stomatal closure in Arabidopsis, whereas 3-O-methyl-D-glucose, D-sorbitol and D-mannitol did not. The data show that the effect of D-glucose on stomata is metabolism-independent, HXK-dependent and irrelevant to osmotic stress. Additionally, the D-glucose induced closure of stomata in wild-type Arabidopsis, but did not in rgs1-1 and rgs1-2 or gpa1-3 and gpa1-4 mutants, indicating that the regulator of G-protein signalling protein (RGS1) and heterotrimeric guanine nucleotide-binding proteins (G proteins)-α subunit (Gα) also mediate the stomatal closure triggered by D-glucose. Furthermore, the effects of D-glucose on hydrogen peroxide (H2O2) or nitric oxide (NO) production and stomatal closure were more significant in AtrbohD or Nia2-1 mutants than in AtrbohF and AtrbohD/F or Nia1-2 and Nia2-5/Nia1-2. The data indicate that H2O2 sourced from AtrbohF and NO generated by Nia1 are essential for D-glucose-mediated stomatal closure. D-glucose-induced H2O2 and NO production in guard cells were completely abolished in rgs1-1 and rgs1-2, which suggests that RGS1 stimulates H2O2 and NO production in D-glucose-induced stomatal closure. Collectively, our data reveal that both HXK and RGS1 are required for D-glucose-mediated stomatal closure. In this context, D-glucose can be sensed by its receptor RGS1, thereby inducing AtrbohF-dependent H2O2 production and Nia1-catalysed NO accumulation, which in turn stimulates stomatal closure.

2015 ◽  
Vol 42 (11) ◽  
pp. 1057 ◽  
Author(s):  
Ai-Xia Huang ◽  
Yong-Shun Wang ◽  
Xiao-Ping She ◽  
Juan Mu ◽  
Jin-Liang Zhao

Hydrogen peroxide is an important intermediate in darkness-induced stomatal closure. In the present work, we provide evidence that copper amine oxidase (CuAO) was involved in H2O2 production in darkness-induced stomatal closure in Vicia faba L. Darkness activated CuAO in intercellular washing fluid from leaves. Aminoguanidine (AG) and 2-bromoethylamine (BEA), which were both irreversible inhibitors of CuAO, significantly suppressed darkness-induced stomatal closure and H2O2 generation. The effects of AG and BEA were reversed only by H2O2 but not by other products of CuAO. These results indicate that CuAO participates in darkness-induced stomatal closure through its reaction product, H2O2. Furthermore, darkness-induced nitric oxide (NO) production and cytosolic alkalinisation were obviously inhibited by AG and BEA, and only H2O2, among the products of CuAO, could reverse the effects, implying that the CuAO-catalysed product H2O2 is required for NO production and cytosolic alkalinisation to a large extent in darkness-induced stomatal closure. In addition, butyric acid blocked but methylamine enhanced the ability of H2O2 to reverse the effect of BEA on NO production, suggesting that cytosolic alkalinisation is involved in CuAO-mediated NO generation in darkness-induced stomatal closure.


1993 ◽  
Vol 85 (4) ◽  
pp. 393-399 ◽  
Author(s):  
A. Ferro ◽  
C. Plumpton ◽  
M. J. Brown

1. Guanine nucleotide-binding proteins (G-proteins) play a central role in signal transduction between a wide variety of cell-surface receptors and intracellular second messenger systems. Recently, we and others have demonstrated that cross-regulation can occur between a variety of G-protein-linked receptors in human heart. Chronic β1-adrenoceptor blockade gives rise to sensitization of β2-adrenoceptor and of 5HT4-receptor responses, both of which are mediated via stimulation of adenylate cyclase through stimulatory G-proteins (Gs), and also gives rise to desensit-ization of muscarinic M2-receptor responses, which inhibit adenylate cyclase through inhibitory G-proteins (Gi). 2. In order to investigate whether these effects are due to quantitative changes in cardiac G-protein isoforms, we measured their abundance in right atrial appendage from patients taking or not taking β1-adrenoceptor antagonists, by immunoblotting. 3. Samples of right atrial appendage homogenate were subjected to SDS/PAGE, and proteins were electroblotted on to nitrocellulose membranes. These were then probed with specific anti-G protein anti-sera, and binding was revealed by means of a secondary antibody labelled with alkaline phosphatase and using a chromogenic substrate. The resulting bands were quantified by laser densitometry. 4. No quantitative differences were detected, between these two groups of patients, in the amounts of α-subunit of ‘long’ or ‘short’ Gs isoforms (GsαL and GsαS), or in the amounts of Gi 1 + 2 α-subunit (Giα1 + 2). Nor was any difference found in the abundance of the β-subunit of G-proteins. No ‘other’ G-protein (Go) was detectable in these samples by immunoblotting. 5. We conclude that the phenomenon of receptor cross-regulation which we have previously observed in human right atrial appendage is unlikely to be explained by quantitative changes at the G-protein level.


2020 ◽  
Vol 21 (3) ◽  
pp. 882
Author(s):  
Xin Ping Li ◽  
Yue Wang ◽  
Yan Jun Ma ◽  
Jian Wen Wang ◽  
Li Ping Zheng

Shiraia mycelial culture is a promising biotechnological alternative for the production of hypocrellin A (HA), a new photosensitizer for anticancer photodynamic therapy (PDT). The extractive fermentation of intracellular HA in the nonionic surfactant Triton X-100 (TX100) aqueous solution was studied in the present work. The addition of 25 g/L TX100 at 36 h of the fermentation not only enhanced HA exudation to the broth by 15.6-fold, but stimulated HA content in mycelia by 5.1-fold, leading to the higher production 206.2 mg/L, a 5.4-fold of the control on day 9. After the induced cell membrane permeabilization by TX100 addition, a rapid generation of nitric oxide (NO) and hydrogen peroxide (H2O2) was observed. The increase of NO level was suppressed by the scavenger vitamin C (VC) of reactive oxygen species (ROS), whereas the induced H2O2 production could not be prevented by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), suggesting that NO production may occur downstream of ROS in the extractive fermentation. Both NO and H2O2 were proved to be involved in the expressions of HA biosynthetic genes (Mono, PKS and Omef) and HA production. NO was found to be able to up-regulate the expression of transporter genes (MFS and ABC) for HA exudation. Our results indicated the integrated role of NO and ROS in the extractive fermentation and provided a practical biotechnological process for HA production.


1996 ◽  
Vol 199 (10) ◽  
pp. 2153-2160
Author(s):  
S M Wilson ◽  
S Rakhit ◽  
R Murdoch ◽  
J D Pediani ◽  
H Y Elder ◽  
...  

Experiments were undertaken using cultured equine sweat gland epithelial cells that express purine receptors belonging to the P2U subclass which allow the selective agonist uridine triphosphate (UTP) to increase the concentration of intracellular free Ca2+ ([Ca2+]i). Experiments using pertussis toxin (Ptx), which inactivates certain guanine-nucleotide-binding proteins (G-proteins), showed that this response consisted of Ptx-sensitive and Ptx-resistant components, and immunochemical analyses of the G-protein alpha subunits present in the cells showed that both Ptx-sensitive (alpha i1-3) and Ptx-resistant (alpha q/11) G-proteins were expressed. P2U receptors may, therefore, normally activate both of these G-protein families. Ptx-sensitive, alpha i2/3 subunits permit inhibitory control of adenylate cyclase, and UTP was shown to cause Ptx-sensitive inhibition of adrenaline-evoked cyclic AMP accumulation, suggesting that the receptors activate Gi2/3. Experiments using cells grown on permeable supports suggested that P2U receptors became essentially confined to the apical membrane in post-confluent cultures. Polarised epithelia may, therefore, express apical P2U receptors which influence two centrally important signal transduction pathways. It is highly improbable that these receptors could be activated by nucleotides released from purinergic nerves, but they may be involved in the autocrine regulation of epithelial function.


Plant Science ◽  
2017 ◽  
Vol 262 ◽  
pp. 190-199 ◽  
Author(s):  
Teng-Yue Zhang ◽  
Feng-Chen Li ◽  
Cai-Ming Fan ◽  
Xuan Li ◽  
Fang-Fang Zhang ◽  
...  

1995 ◽  
Vol 270 (32) ◽  
pp. 18804-18808 ◽  
Author(s):  
Jaco C. Knol ◽  
Arno R. van der Slik ◽  
Ellen R. van Kesteren ◽  
Rudi J. Planta ◽  
Harm van Heerikhuizen ◽  
...  

2005 ◽  
Vol 32 (3) ◽  
pp. 237 ◽  
Author(s):  
Jun-Min He ◽  
Hua Xu ◽  
Xiao-Ping She ◽  
Xi-Gui Song ◽  
Wen-Ming Zhao

Previous studies have showed that UV-B can stimulate closure as well as opening of stomata. However, the mechanism of this complex effect of UV-B is not clear. The purpose of this paper is to investigate the role and the interrelationship of H2O2 and NO in UV-B-induced stomatal closure in broad bean (Vicia faba L.). By epidermal strip bioassay and laser-scanning confocal microscopy, we observed that UV-B-induced stomatal closure could be largely prevented not only by NO scavenger c-PTIO or NO synthase (NOS) inhibitor l-NAME, but also by ascorbic acid (ASC, an important reducing substrate for H2O2 removal) or catalase (CAT, the H2O2 scavenger), and that UV-B-induced NO and H2O2 production in guard cells preceded UV-B-induced stomatal closure. These results indicate that UV-B radiation induces stomatal closure by promoting NO and H2O2 production. In addition, c-PTIO, l-NAME, ASC and CAT treatments could effectively inhibit not only UV-B-induced NO production, but also UV-B-induced H2O2 production. Exogenous H2O2-induced NO production and stomatal closure were partly abolished by c-PTIO and l-NAME. Similarly, exogenous NO donor sodium nitroprusside-induced H2O2 production and stomatal closure were also partly reversed by ASC and CAT. These results show a causal and interdependent relationship between NO and H2O2 during UV-B-regulated stomatal movement. Furthermore, the l-NAME data also indicate that the NO in guard cells of Vicia faba is probably produced by a NOS-like enzyme.


2015 ◽  
Vol 82 (1) ◽  
pp. 138-150 ◽  
Author(s):  
Xiao-Min Ge ◽  
Hong-Li Cai ◽  
Xue Lei ◽  
Xue Zhou ◽  
Ming Yue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document