cell membrane permeabilization
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 11 (23) ◽  
pp. 11121
Author(s):  
Emma Chiaramello ◽  
Serena Fiocchi ◽  
Marta Bonato ◽  
Silvia Gallucci ◽  
Martina Benini ◽  
...  

This paper describes a computational approach for the assessment of electric field enhancement by using highly conductive gold nanoparticles (Au NPs) in time-varying electromagnetic fields cell membrane permeabilization, estimating the influence of the presence of Au NPs on transmembrane potential and on the pore opening dynamics. To account for variability and uncertainty about geometries and relative placement and aggregations of the Au NPs, three different NP configurations were considered: spherical Au NPs equally spaced around the cell; cubic Au NPs, for accounting for the possible edge effect, equally spaced around the cell; and spherical Au NPs grouped in clusters. The results show that the combined use of Au NPs and a time-varying magnetic field can significantly improve the permeabilization of cell membranes. The variability of NPs’ geometries and configurations in proximity of the cell membrane showed to have a strong influence on the pore opening mechanism. The study offers a better comprehension of the mechanisms, still not completely understood, underlying cell membrane permeabilization by time-varying magnetic fields.


2021 ◽  
Author(s):  
mingchao Mu ◽  
Qiaoling Yu ◽  
Qin Zhang ◽  
Jing Guo ◽  
Xingjie Wang ◽  
...  

Abstract BackgroundThe gasdermins (GSDMs) family is proposed to be pore-forming effector proteins that cause cell membrane permeabilization and pyroptosis. Despite our increasing knowledge of GSDMD, GSDME and GSDMB, the biological functions and the regulation of GSDM expression and activation remain elusive for most GSDMs. In this study, we analyzed the molecular characteristics and oncogenic role of GSDM family genes systematically. MethodsTCGA, CCLE, cBioPortal, GEPIA, CellMiner and BioGRID databases were utilized in this study. Immunohistochemical analysis and a series of in vitro experiments were conducted.ResultsWe found that, in cancer, GSDM genes and their expressions extensively changed, which were associated with patient survival. The expression of GSDMs was widely associated with cancer-related pathways, drug resistance, immune subtypes, tumor microenvironment and cancer cell stemness. However, an intra- and inter-cancer heterogeneity was discovered regarding the corresponding GSDM gene. We found that GSDMA and GSDMB regulated drug resistance to the opposite direction of GSDME. In colorectal cancer, GSDME might be a positive regulator in cell invasion and metastasis through cell migration and angiogenesis, while GSDMA, GSDMB and GSDMD might be a negatively regulator of cell migration. ConclusionsGSDM family genes might play important roles in cancer other than pyroptosis. We suggest more efforts be made to investigate the GSDM family and each GSDM gene be studied as an entity in each type of cancer.


2021 ◽  
Vol 22 (16) ◽  
pp. 8362
Author(s):  
Naike Casagrande ◽  
Cinzia Borghese ◽  
Laura Gabbatore ◽  
Laura Morbiato ◽  
Marta De Zotti ◽  
...  

Peptaibols, by disturbing the permeability of phospholipid membranes, can overcome anticancer drug resistance, but their natural hydrophobicity hampers their administration. By a green peptide synthesis protocol, we produced two water-soluble analogs of the peptaibol trichogin GA IV, termed K6-Lol and K6-NH2. To reduce production costs, we successfully explored the possibility of changing the naturally occurring 1,2-aminoalcohol leucinol to a C-terminal amide. Peptaibol activity was evaluated in ovarian cancer (OvCa) and Hodgkin lymphoma (HL) cell lines. Peptaibols exerted comparable cytotoxic effects in cancer cell lines that were sensitive—and had acquired resistance—to cisplatin and doxorubicin, as well as in the extrinsic-drug-resistant OvCa 3-dimensional spheroids. Peptaibols, rapidly taken up by tumor cells, deeply penetrated and killed OvCa-spheroids. They led to cell membrane permeabilization and phosphatidylserine exposure and were taken up faster by cancer cells than normal cells. They were resistant to proteolysis and maintained a stable helical structure in the presence of cancer cells. In conclusion, these promising results strongly point out the need for further preclinical evaluation of our peptaibols as new anticancer agents.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 847
Author(s):  
Florian N. Gailliègue ◽  
Mindaugas Tamošiūnas ◽  
Franck M. André ◽  
Lluis M. Mir

Sonoporation is the process of cell membrane permeabilization, due to exposure to ultrasounds. There is a lack of consensus concerning the mechanisms of sonoporation: Understanding the mechanisms of sonoporation refines the choice of the ultrasonic parameters to be applied on the cells. Cells’ classical exposure systems to ultrasounds have several drawbacks, like the immersion of the cells in large volumes of liquid, the nonhomogeneous acoustic pressure in the large sample, and thus, the necessity for magnetic stirring to somehow homogenize the exposure of the cells. This article reports the development and characterization of a novel system allowing the exposure to ultrasounds of very small volumes and their observation under the microscope. The observation under a microscope imposes the exposure of cells and Giant Unilamellar Vesicles under an oblique incidence, as well as the very unusual presence of rigid walls limiting the sonicated volume. The advantages of this new setup are not only the use of a very small volume of cells culture medium/microbubbles (MB), but the presence of flat walls near the sonicated region that results in a more homogeneous ultrasonic pressure field, and thus, the control of the focal distance and the real exposure time. The setup presented here comprises the ability to survey the geometrical and dynamical aspects of the exposure of cells and MB to ultrasounds, if an ultrafast camera is used. Indeed, the setup thus fulfills all the requirements to apply ultrasounds conveniently, for accurate mechanistic experiments under an inverted fluorescence microscope, and it could have interesting applications in photoacoustic research.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 706
Author(s):  
Haoran Zhang ◽  
Aijun Zhang ◽  
Anisha A. Gupte ◽  
Dale J. Hamilton

Melanoma is one of the most malignant skin cancers that require comprehensive therapies, including chemotherapy. A plant-derived drug, plumbagin (PLB), exhibits an anticancer property in several cancers. We compared the cytotoxic and metabolic roles of PLB in A375 and SK-MEL-28 cells, each with different aggressiveness. In our results, they were observed to have distinctive mitochondrial respiratory functions. The primary reactive oxygen species (ROS) source of A375 can be robustly attenuated by cell membrane permeabilization. A375 cell viability and proliferation, migration, and apoptosis induction are more sensitive to PLB treatment. PLB induced metabolic alternations in SK-MEL-28 cells, which included increasing mitochondrial oxidative phosphorylation (OXPHOS), mitochondrial ATP production, and mitochondrial mass. Decreasing mitochondrial OXPHOS and total ATP production with elevated mitochondrial membrane potential (MMP) were observed in PLB-induced A375 cells. PLB also induced ROS production and increased proton leak and non-mitochondria respiration in both cells. This study reveals the relationship between metabolism and cytotoxic effects of PLB in melanoma. PLB displays stronger cytotoxic effects on A375 cells, which exhibit lower respiratory function than SK-MEL-28 cells with higher respiratory function, and triggers cell-specific metabolic changes in accordance with its cytotoxic effects. These findings indicate that PLB might serve as a promising anticancer drug, targeting metabolism.


2021 ◽  
Author(s):  
Sebnem Gunes ◽  
Zhonglei He ◽  
Renee Malone ◽  
Patrick J Cullen ◽  
James F Curtin

AbstractPlatinum nanoparticles (PtNPs) have been investigated for their antioxidant abilities in a range of biological and other applications. The ability to reduce off-target CAP cytotoxicity would be useful in Plasma Medicine, however, little has been published to date about the ability of PtNPs to reduce or inhibit the effects of CAP. Here we investigate whether PtNPs can protect against CAP-induced cytotoxicity in cancerous and non-cancerous cell lines. PtNPs were shown to dramatically reduce intracellular reactive species (RONS) production in human U-251 MG cells. However, RONS generation was unaffected by PtNPs in medium without cells. PtNPs protect against CAP induced mitochondrial membrane depolarization, but not cell membrane permeabilization which is a CAP-induced RONS-independent event. PtNPs act as potent intracellular scavengers of reactive species and can protect both cancerous U-251 MG cells and non-cancerous HEK293 cells against CAP induced cytotoxicity. PtNPs may be useful as a catalytic antioxidant for healthy tissue and for protecting against CAP-induced tissue damage.Graphical AbstractPtNPs are potent catalase and superoxide dismutase mimetics which makes them strong antioxidant candidates for the protection of cells against oxidative stress. CAP was generated using a Dielectric Barrier Device (DBD) system with a voltage output of 75 kV at a frequency of 50 Hz. A range of concentrations of 3nm uncoated PtNPs combined with CAP were examined in human U-251 MG Glioblastoma (GBM) cells and non-cancerous human embryonic kidney HEK293 cells. The protective effects of PtNPs against CAP were explored using several biochemical indicators of oxidative stress and cytotoxicity.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 32
Author(s):  
Martynas Maciulevičius ◽  
Diana Navickaitė ◽  
Sonam Chopra ◽  
Baltramiejus Jakštys ◽  
Saulius Šatkauskas

Intracellular calcium ion delivery via sonoporation has been validated to be a substitute for classical chemotherapy. However, the mechanism behind calcium sonoporation remains unclear to this day. To elucidate the role of calcium in the process of sonoporation, we aimed to investigate the influence of different calcium concentration on cell membrane permeabilization and cell viability after sonoporation. In this study, we present experimental evidence that extracellular calcium plays a major role in cell membrane molecular transport after applying ultrasound pulses. Ultrasound-microbubble cavitation in the presence of different calcium concentration affects fundamental cell bio-physio-chemical conditions: cell membrane integrity, metabolic activity, and colony formation. Corresponding vital characteristics were evaluated using three independent viability tests: propidium iodide assay (20 min–3 h), MTT assay (48 h), and cell clonogenic assay (6 d). The results indicate instant cell death, as the level of cell viability was determined to be similar within a 20 min–48 h–6 d period. Inertial cavitation activities have been determined to be directly involved in calcium delivery via sonoporation according to high correlation (R2 > 0.85, p < 0.01) of inertial cavitation dose with change in either cell membrane permeabilization, metabolic activity, and colony formation efficiency. In general, calcium delivery via sonoporation induces rapid cell death, occurring within 20 min after treatment, that is the result of ultrasound mediated microbubble cavitation.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5538
Author(s):  
Zhongxuan Li ◽  
Qiang Cheng ◽  
Henan Guo ◽  
Rijun Zhang ◽  
Dayong Si

EF-1 is a novel peptide derived from two bacteriocins, plantaricin E and plantaricin F. It has a strong antibacterial activity against Escherichia coli and with negligible hemolytic effect on red blood cells. However, the chemical synthesis of EF-1 is limited by its high cost. In this study, we established a heterologous expression of EF-1 in Pichia pastoris. The transgenic strain successfully expressed hybrid EF-1 peptide, which had a molecular weight of ~5 kDa as expected. The recombinant EF-1 was purified by Ni2+ affinity chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), which achieved a yield of 32.65 mg/L with a purity of 94.9%. The purified EF-1 exhibited strong antimicrobial and bactericidal activities against both Gram-positive and -negative bacteria. Furthermore, propidium iodide staining and scanning electron microscopy revealed that EF-1 can directly induce cell membrane permeabilization of E. coli. Therefore, the hybrid EF-1 not only preserves the individual properties of the parent peptides, but also acquires the ability to disrupt Gram-negative bacterial membrane. Meanwhile, such an expression system can reduce both the time and cost for large-scale peptide production, which ensures its potential application at the industrial level.


Sign in / Sign up

Export Citation Format

Share Document