Hydrogen sulfide may function downstream of hydrogen peroxide in mediating darkness-induced stomatal closure in Vicia faba

2018 ◽  
Vol 45 (5) ◽  
pp. 553 ◽  
Author(s):  
Yinli Ma ◽  
Jiao Niu ◽  
Wei Zhang ◽  
Xiang Wu

The relationship between hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) during darkness-induced stomatal closure in Vicia faba L. was investigated by using pharmacological, spectrophotographic and lasers canning confocal microscopic approaches. Darkness-induced stomatal closure was inhibited by H2S scavenger hypotaurine (HT), H2S synthesis inhibitors aminooxy acetic acid (AOA) and hydroxylamine (NH2OH) and potassium pyruvate (N3H3KO3) and ammonia (NH3), which are the products of L-/D-cysteine desulfhydrase (L-/D-CDes). Moreover, darkness induced H2S generation and increased L-/D-CDes activity in leaves of V. faba. H2O2 scavenger and synthesis inhibitors suppressed darkness-induced increase of H2S levels and L-/D-CDes activity as well as stomatal closure in leaves of V. faba. However, H2S scavenger and synthesis inhibitors had no effect on darkness-induced H2O2 accumulation in guard cells of V. faba. From these data it can be deduced that H2S is involved in darkness-induced stomatal closure and acts downstream of H2O2 in V. faba.

2019 ◽  
Vol 46 (2) ◽  
pp. 136 ◽  
Author(s):  
Yinli Ma ◽  
Wei Zhang ◽  
Jiao Niu ◽  
Yu Ren ◽  
Fan Zhang

The roles of hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) in signalling transduction of stomatal closure induced by salt stress were examined by using pharmacological, spectrophotographic and laser scanning confocal microscopic (LSCM) approaches in Vicia faba L. Salt stress resulted in stomatal closure, and this effect was blocked by H2S modulators hypotaurine (HT), aminooxy acetic acid (AOA), hydroxylamine (NH2OH), potassium pyruvate (C3H3KO3) and ammonia (NH3) and H2O2 modulators ascorbic acid (ASA), catalase (CAT), diphenylene iodonium (DPI). Additionally, salt stress induced H2S generation and increased L-/D-cysteine desulfhydrase (L-/D-CDes, pyridoxalphosphate-dependent enzyme) activity in leaves, and caused H2O2 production in guard cells, and these effects were significantly suppressed by H2S modulators and H2O2 modulators respectively. Moreover, H2O2 modulators suppressed salt stress-induced increase of H2S levels and L-/D-CDes activity in leaves as well as stomatal closure of V. faba. However, H2S modulators had no effects on salt stress-induced H2O2 production in guard cells. Altogether, our data suggested that H2S and H2O2 probably are involved in salt stress-induced stomatal closure, and H2S may function downstream of H2O2 in salt stress-induced stomatal movement in V. faba.


2019 ◽  
Author(s):  
Yinli Ma ◽  
Luhan Shao ◽  
Jiao Niu

Abstract Background Whether stomatal movement by darkness in Arabidopsis thaliana is mediated by hydrogen sulfide (H2S) is undiscovered yet, so the interaction between hydrogen peroxide (H2O2) and H2S in the process needs to be elucidated. Results Our results indicated that H2S modulators aminooxy acetic acid (AOA), potassium pyruvate (N3H3KO3) + ammonia (NH3), hydroxylamine (NH2OH), and hypotaurine (HT) inhibited darkness-induced stomatal closure, H2S generation and L-/D-cysteine desulfhydrase (L-/D-CDes) activity increased in wild-type A. thaliana leaves. Darkness induced stomatal closure in wild-type plants, but failed in Atl-cdes and Atd-cdes mutants. Additionally, both L-/D-CDes activity and H2S content were significantly decreased after applying H2O2 modulators salicylhydroxamic acid (SHAM), ascorbic acid (ASA), diphenylene iodonium (DPI), and catalase (CAT) in darkness, but there was almost no effects on H2O2 levels in the presence of AOA, C3H3KO3+NH3, NH2OH, and HT of wild-type plants in darkness. Moreover, darkness couldn't increase H2S content and L-/D-CDes activity of AtrbohF and AtrbohD/F mutants leaves, but increased H2O2 levels in Atl-cdes and Atd-cdes guard cells. Conclusions We observed that L-/D-CDes-generated H2S mediates stomatal closure by darkness, and functions downstream of H2O2 in A. thaliana.


2006 ◽  
Vol 33 (6) ◽  
pp. 573 ◽  
Author(s):  
Xi-Gui Song ◽  
Xiao-Ping She ◽  
Jun-Min He ◽  
Chen Huang ◽  
Tu-sheng Song

Previous studies have shown that cytokinins and auxins can induce the opening of stomata. However, the mechanism of stomatal opening caused by cytokinins and auxins remains unclear. The purpose of this paper is to investigate the relationship between hydrogen peroxide (H2O2) levels in guard cells and stomatal opening induced by cytokinins and auxins in Vicia faba. By means of stomatal bioassay and laser-scanning confocal microscopy, we provide evidence that cytokinins and auxins reduced the levels of H2O2 in guard cells and induced stomatal opening in darkness. Additionally, cytokinins not only reduced exogenous H2O2 levels in guard cells caused by exposure to light, but also abolished H2O2 that had been generated during a dark period, and promoted stomatal opening, as did ascorbic acid (ASA, an important reducing substrate for H2O2 removal). However, unlike cytokinins, auxins did not reduce exogenous H2O2, did not abolish H2O2 that had been generated in the dark, and therefore did not promote reopening of stoma induced to close in the dark. The above-mentioned effects of auxins were similar to that of diphenylene iodonium (DPI, an inhibitor of the H2O2-generating enzyme NADPH oxidase). Taken together our results indicate that cytokinins probably reduce the levels of H2O2 in guard cells by scavenging, whereas auxins limit H2O2 levels through restraining H2O2 generation, inducing stomatal opening in darkness.


1994 ◽  
Vol 72 (12) ◽  
pp. 1835-1842 ◽  
Author(s):  
Michèle Ridolfi ◽  
Jean Pierre Garrec ◽  
Philippe Louguet ◽  
Daniel Lafray

The effects of potassium or calcium deficiency on stomatal functioning were investigated in Vicia faba L. plants grown hydroponically. In the leaves of plants grown with 1 mM K+, stomatal opening occurred in light with either normal or CO2-free air; K+ and C1− accumulations in guard cells were similar to those of the control plants grown with 5 mM K+. With the zero K+ treatment, stomatal apertures were not affected, while K+ and Cl− guard cell concentrations fell to 30% of the control values. These results may indicate that other solutes contribute to the lowering of osmotic potential during opening. Stomata of calcium-deficient plants remained fully open in darkness, whereas abscisic acid (ABA) supply induced a partial stomatal closing movement. Therefore, calcium deficiency inhibited the process(es) linked with the perception of darkness and stomatal closure. On the other hand, stomatal sensitivity to ABA was only partially affected. Key words: stomatal aperture, potassium, calcium, X-ray microanalysis.


2012 ◽  
Vol 11 (10) ◽  
pp. 1644-1653 ◽  
Author(s):  
Jing LIU ◽  
Zhi-hui HOU ◽  
Guo-hua LIU ◽  
Li-xia HOU ◽  
Xin LIU

2000 ◽  
Author(s):  
Eva J. Pell ◽  
Sarah M. Assmann ◽  
Amnon Schwartz ◽  
Hava Steinberger

Original objectives (revisions from original proposal are highlighted) 1. Elucidate the direct effects O3 and H2O2 on guard cell function, utilizing assays of stomatal response in isolated epidermal peels and whole cell gas exchange. 2. Determine the mechanistic basis of O3 and H2O2 effects on the plasma membrane through application of the electrophysiological technique of patch clamping to isolated guard cells. 3. Determine the relative sensitivity of Israeli cultivars of economically important crops to O3 and determine whether differential leaf conductance responses to O3 can explain relative sensitivity to the air pollutant: transfer of technological expertise to Israel. Background to the topic For a long time O3 has been known to reduce gas exchange in plants; it has however been unclear if O3 can affect the stomatal complex directly. Ion channels are essential in stomatal regulation, but O3 has never before been shown to affect these directly. Major conclusions, solution, achievements 1. Ozone inhibits light-induced stomatal opening in epidermal peels isolated from Vicia faba, Arabidopsis thaliana and Nicotiana tabacum in V. faba plants this leads to reduced assimilation without a direct effect on the photosynthetic apparatus. Stomatal opening is more sensitive to O3 than stomatal closure. 2. Ozone causes inhibition of inward K+ channels (involved in stomatal opening) while no detectable effect is observed o the outward K+ channels (stomatal closure). 3. Hydrogen peroxide inhibits stomatal opening and induces stomatal closure in epidermal peels isolated from Vicia faba. 4. Hydrogen peroxide enhances stomatal closure by increasing K+ efflux from guard cells via outward rectifying K+ channels. 5. Based on epidermal peel experiments we have indirectly shown that Ca2+ may play a role in the guard cell response to O3. However, direct measurement of the guard cell [Ca2+]cyt did not show a response to O3. 6. Three Israeli cultivars of zucchini, Clarita, Yarden and Bareqet, were shown to be relatively sensitive to O3 (0.12 ml1-1 ). 7. Two environmentally important Israeli pine species are adversely affected by O3, even at 0.050 ml1-1 , a level frequently exceeded under local tropospheric conditions. P. brutia may be better equipped than P. halepensis to tolerate O3 stress. 8. Ozone directly affects pigment biosynthesis in pine seedlings, as well as the metabolism of O5 precursors, thus affecting the allocation of resources among various metabolic pathways. 9. Ozone induces activity of antioxidant enzymes, and of ascorbate content i the mesophyll and epidermis cells of Commelina communis L. Implications, both scientific and agricultural We have improved the understanding of how O3 and H2O2 do affect guard cell and stomatal function. We have shown that economical important Israeli species like zucchini and pine are relatively sensitive to O3.


2021 ◽  
Vol 48 (2) ◽  
pp. 195 ◽  
Author(s):  
Yinli Ma ◽  
Luhan Shao ◽  
Wei Zhang ◽  
Fengxi Zheng

The role of hydrogen sulfide (H2S) and its relationship with hydrogen peroxide (H2O2) in brassinosteroid-induced stomatal closure in Arabidopsis thaliana (L.) Heynh. were investigated. In the present study, 2,4-epibrassinolide (EBR, a bioactive BR) induced stomatal closure in the wild type, the effects were inhibited by H2S scavenger and synthesis inhibitors, and H2O2 scavengers and synthesis inhibitor. However, EBR failed to close the stomata of mutants Atl-cdes, Atd-cdes, AtrbohF and AtrbohD/F. Additionally, EBR induced increase of L-/D-cysteine desulfhydrase (L-/D-CDes) activity, H2S production, and H2O2 production in the wild type, and the effects were inhibited by H2S scavenger and synthesis inhibitors, and H2O2 scavengers and synthesis inhibitor respectively. Furthermore, EBR increased H2O2 levels in the guard cells of AtrbohD mutant, but couldn’t raise H2O2 levels in the guard cells of AtrbohF and AtrbohD/F mutants. Next, scavengers and synthesis inhibitor of H2O2 could significantly inhibit EBR-induced rise of L-/D-CDes activity and H2S production in the wild type, but H2S scavenger and synthesis inhibitors failed to repress EBR-induced H2O2 production. EBR could increase H2O2 levels in the guard cells of Atl-cdes and Atd-cdes mutants, but EBR failed to induce increase of L-/D-CDes activity and H2S production in AtrbohF and AtrbohD/F mutants. Therefore, we conclude that H2S and H2O2 are involved in the signal transduction pathway of EBR-induced stomatal closure. Altogether, our data suggested that EBR induces AtrbohF-dependent H2O2 production and subsequent AtL-CDes-/AtD-CDes-catalysed H2S production, and finally closes stomata in A. thaliana.


Sign in / Sign up

Export Citation Format

Share Document