stomatal sensitivity
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 13)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Hang Xu ◽  
Zhiqiang Zhang ◽  
Ram Oren ◽  
Xiaoyun Wu

Abstract Increased drought intensity with rising atmospheric demand for water (hereafter VPD) increases the risk of tree mortality worldwide. Ecosystem-scale water-use strategy (WUSe), quantified here by canopy stomatal sensitivity to VPD (Sc), is increasingly recognized as a factor in drought-related ecosystem dysfunction. However, the links between Sc and ecosystem adaptation to and stability following droughts are poorly established. We examined how Sc regulates carbon sequestration, identifying ecosystems potentially susceptible to drought-induced mortality based on data from the global flux network, remote-sensing products, and plant functional-traits archive. We found that Sc is higher where ecosystem water availability is low in arid regions, reflecting conservative WUSe (i.e., hypersensitivity), but ecosystems of all regions converge on permissive WUSe (i.e., hyposensitivity) under ample water supply. During extreme droughts, hyposensitive and hypersensitive ecosystems achieved similar net ecosystem productivity employing considerably different structural-functional strategies. However, hyposensitive ecosystems, risking their hydraulic system with permissive WUSe, did not recover from extreme droughts as quickly. Models predicting current performance and future distributions of vegetation types should account for the greater vulnerability of hyposensitive ecosystems to intensifying atmospheric and soil drought.


2021 ◽  
Vol 22 (18) ◽  
pp. 9892
Author(s):  
Yanli Zhang ◽  
Yuanling Sun ◽  
Xiaojing Liu ◽  
Jiayin Deng ◽  
Jun Yao ◽  
...  

Stomatal regulation is crucial to reduce water consumption under drought conditions. Extracellular ATP (eATP) serves as a signaling agent in stomatal regulation; however, it is less known whether the eATP mediation of stomatal aperture is linked to apyrases (APYs), the principal enzymes that control the concentration of eATP. To clarify the role of APYs in stomatal control, PeAPY1 and PeAPY2 were isolated from Populus euphratica and transferred into Arabidopsis. Compared with the wild-type Arabidopsis and loss-of-function mutants (Atapy1 and Atapy2), PeAPY1- and PeAPY2-transgenic plants decreased stomatal aperture under mannitol treatment (200 mM, 2 h) and reduced water loss during air exposure (90 min). The role of apyrase in stomatal regulation resulted from its control in eATP-regulated stomatal movements and increased stomatal sensitivity to ABA. The bi-phasic dose-responses to applied nucleotides, i.e., the low ATP (0.3–1.0 mM)-promoted opening and high ATP (>2.0 mM)-promoted closure, were both restricted by P. euphratica apyrases. It is noteworthy that eATP at a low concentration (0.3 mM) counteracted ABA action in the regulation of stomatal aperture, while overexpression of PeAPY1 or PeAPY2 effectively diminished eATP promotion in opening, and consequently enhanced ABA action in closure. We postulate a speculative model of apyrase signaling in eATP- and ABA-regulated stomatal movements under drought.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1777
Author(s):  
Marco A. Yáñez ◽  
Javier I. Urzua ◽  
Sergio E. Espinoza ◽  
Victor L. Peña

Aristotelia chilensis (Molina) Stuntz is a promising species in the food industry as it provides ‘super fruits’ with remarkable antioxidant activity. However, under the predicted climate change scenario, the ongoing domestication of the species must consider selecting the most productive genotypes and be based on traits conferring drought tolerance. We assessed the vulnerability to cavitation and stomatal sensitivity to vapor pressure deficit (VPD) in A. chilensis clones originated from provenances with contrasting climates. A nursery experiment was carried out for one growing season on 2-year-old potted plants. Measurements of stomatal conductance (gs) responses to VPD were taken in spring, summer, and autumn, whereas vulnerability to cavitation was evaluated at the end of spring. Overall, the vulnerability to cavitation of the species was moderate (mean P50 of −2.2 MPa). Parameters of the vulnerability curves (Kmax, P50, P88, and S50) showed no differences among clones or when northern and southern clones were compared. Moreover, there were no differences in stomatal sensitivity to VPD at the provenance or the clonal level. However, compared with other studies, the stomatal sensitivity was considered moderately low, especially in the range of 1 to 3 kPa of VPD. The comparable performance of genotypes from contrasting provenance origins suggests low genetic variation for these traits. Further research must consider testing on diverse environmental conditions to assess the phenotypic plasticity of these types of traits.


2021 ◽  
Vol 4 ◽  
Author(s):  
Heidi J. Renninger ◽  
Leah F. Stewart ◽  
Randall J. Rousseau

The southeastern United States has wide-scale potential to achieve high productivity from elite eastern cottonwood and hybrid poplar varietals to produce renewable bioenergy and bioproducts. In order to determine how environmental drivers impact water use and growth so that individuals can maintain growth during drought periods, varietals that use water efficiently, and/or tolerate water stress conditions, are needed to make planting recommendations across a variety of sites. Additionally, inoculation with nitrogen-fixing endophytic bacteria may improve water stress tolerance. The goals of this research were (1) to determine water use strategies using measurements of diurnal sapflow and differences in leaf retention for three eastern cottonwood (Populus deltoides, ST66, S7C8, and 110412) and three hybrid poplar (two P. deltoides × Populus maximowiczii, 6329 and 8019, and one Populus trichocarpa × P. deltoides, 5077) varietals on contrasting field sites, (2) determine the physiological impact of endophyte inoculation, and (3) determine which physiological parameters were most highly correlated with aboveground biomass. We found that whole-tree water use efficiency (WUE) was similar across varietals at 5.2 g biomass per kg water used and that water use scaled with tree size. We found that water use strategies in terms of scaled stomatal sensitivity to vapor pressure deficit converged across varietals under stressful soil water conditions at both sites, but that varietals 8019 and 110412 tended to exhibit the highest plasticity in stomatal sensitivity exhibiting the largest range in scaled stomatal sensitivity under different soil moisture conditions. Endophyte inoculation increased growth and stomatal sensitivity at the nitrogen-limited site. Leaf area, whole-tree WUE, and plasticity in stomatal sensitivity were correlated with aboveground biomass production across sites and varietals. Overall, these data can be used to model hydrologic impacts of large-scale Populus biofuel production as well as recommend varietals with efficient water use and stomatal sensitivity under a range of soil and atmospheric moisture stress factors.


Author(s):  
Sergio Tombesi ◽  
Tommaso Frioni ◽  
Paolo Sabbatini ◽  
Stefano Poni ◽  
Alberto Palliotti

AbstractClimate change scenarios and the need of sustainable tools to reduce global warming impact on agriculture have led to the formulation of a large number of natural products or biostimulants that should increase plant resilience to abiotic stress. Ascophyllum nodosum (AN) extract is one of the most studied biostimulants to increase tolerance to drought stress, but the physiological mechanism underlying its action is still poorly understood. The aim of the present work was to determine AN extract impact on grapevine gas exchange under well-watered and water stress conditions and to examine its mode of action under stress (light and temperature). AN caused a slight increase in stomatal conductance that resulted in an increase of water plant conductivity to atmosphere. Increased transpiration induced by AN improved leaf thermoregulation, facilitating vine recovery after a stress period. AN increased transpiration through a reduction of stomatal sensitivity to VPD. AN action on stomata regulation indicated that this biostimulant could be a new potential tool to limit leaf damage during events of extreme temperature, even when they are not combined with water stress conditions.


Author(s):  
Rebecca K. Vandegeer ◽  
Chenchen Zhao ◽  
Ximena Cibils‐Stewart ◽  
Richard Wuhrer ◽  
Casey R. Hall ◽  
...  

2020 ◽  
Vol 21 (12) ◽  
pp. 4276
Author(s):  
Jia Xu ◽  
Livio Trainotti ◽  
Mingai Li ◽  
Claudio Varotto

Isoprene is the most abundant single biogenic volatile compound emitted by plants. Despite the relevance of this molecule to plant abiotic resistance and its impact on global atmospheric chemistry, little is known about the details of its mechanism of action. Here, we characterized through both physiological and molecular methods the mechanisms of action of isoprene using model transgenic arabidopsis lines overexpressing a monocot isoprene synthase gene. Our results demonstrated the effect that isoprene had on ABA signaling at different tissue-specific, spatial, and temporal scales. In particular, we found that isoprene enhanced stomatal sensitivity to ABA through upregulation of RD29B signaling gene. By contrast, isoprene decreased sensitivity to ABA in germinating seeds and roots, suggesting tissue-specific mechanisms of action. In leaves, isoprene caused the downregulation of COR15A and P5CS genes, suggesting that the enhanced tolerance to water-deprivation stress observed in isoprene-emitting plants may be mediated chiefly by an enhanced membrane integrity and tolerance to osmotic stress.


2020 ◽  
Vol 12 (4) ◽  
pp. 231
Author(s):  
Layanara Oliveira Faria ◽  
Ane Gabriele Vaz Souza ◽  
Fernanda Pires de Alvarenga ◽  
Frederico da Costa Mendes Silva ◽  
Jaime Santos do Rego Junior ◽  
...  

The present study aimed to evaluate the initial growth of Passiflora edulis plants under water deficit and inundation. The work was carried out in a greenhouse covered with transparent plastic in pots with a capacity of five liters and filled with 5 kg of substrate composed of oxisol, sand and cattle manure in the proportion of 3:1:1, respectively. The experimental design used was completely randomized, with seven treatments and five repetitions; 30 days after emergence, the plants were irrigated with water equivalent to 25%, 50%, 75%, 100%, 125%, 150% and 175% of the pot capacity and the analyzes were performed on the 52nd day. The P. edulis plants under limitation and excess water showed high stomatal sensitivity to reduce the water. In addition, under water deficit, the plants showed bigger root growth to maximize water absorption from the soil, but in both stresses the plants demonstrated reduced vegetative growth, that implies retarded establishment, thus, demonstrating an average susceptibility to water deficit and inundation.


Sign in / Sign up

Export Citation Format

Share Document