h2o2 accumulation
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 17)

H-INDEX

25
(FIVE YEARS 3)

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1556
Author(s):  
Md Atikur Rahman ◽  
Ahmad Humayan Kabir ◽  
Yowook Song ◽  
Sang-Hoon Lee ◽  
Mirza Hasanuzzaman ◽  
...  

Iron (Fe) deficiency impairs photosynthetic efficiency, plant growth and biomass yield. This study aimed to reveal the role of nitric oxide (NO) in restoring Fe-homeostasis and oxidative status in Fe-deficient alfalfa. In alfalfa, a shortage of Fe negatively affected the efficiency of root andshoot length, leaf greenness, maximum quantum yield PSII (Fv/Fm), Fe, S, and Zn accumulation, as well as an increase in H2O2 accumulation. In contrast, in the presence of sodium nitroprusside (SNP), a NO donor, these negative effects of Fe deficiency were largely reversed. In response to the SNP, the expression of Fe transporters (IRT1, NRAMP1) and S transporter (SULTR1;2) genes increased in alfalfa. Additionally, the detection of NO generation using fluorescence microscope revealed that SNP treatment increased the level of NO signal, indicating that NO may act as regulatory signal in response to SNP in plants. Interestingly, the increase of antioxidant genes and their related enzymes (Fe-SOD, APX) in response to SNP treatment suggests that Fe-SOD and APX are key contributors to reducing ROS (H2O2) accumulation and oxidative stress in alfalfa. Furthermore, the elevation of Ascorbate-glutathione (AsA-GSH) pathway-related genes (GR and MDAR) Fe-deficiency with SNP implies that the presence of NO relates to enhanced antioxidant defense against Fe-deficiency stress.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1457
Author(s):  
Jingjing Chang ◽  
Yanliang Guo ◽  
Jiayue Li ◽  
Zhuangzhuang Su ◽  
Chunxia Wang ◽  
...  

Cold stress is a major environmental factor that detrimentally affects plant growth and development. Melatonin has been shown to confer plant tolerance to cold stress through activating the C-REPEAT BINDING FACTOR (CBF) pathway; however, the underlying modes that enable this function remain obscure. In this study, we investigated the role of H2O2 and Ca2+ signaling in the melatonin-induced CBF pathway and cold tolerance in watermelon (Citrullus lanatus L.) through pharmacological, physiological, and genetic approaches. According to the results, melatonin induced H2O2 accumulation, which was associated with the upregulation of respiratory burst oxidase homolog D (ClRBOHD) during the early response to cold stress in watermelon. Besides, melatonin and H2O2 induced the accumulation of cytoplasmic free Ca2+ ([Ca2+]cyt) in response to cold. This was associated with the upregulation of cyclic nucleotide-gated ion channel 2 (ClCNGC2) in watermelon. However, blocking of Ca2+ influx channels abolished melatonin- or H2O2-induced CBF pathway and cold tolerance. Ca2+ also induced ClRBOHD expression and H2O2 accumulation in early response to cold stress in watermelon. Inhibition of H2O2 production in watermelon by RBOH inhibitor or in Arabidopsis by AtRBOHD knockout compromised melatonin-induced [Ca2+]cyt accumulation and melatonin- or Ca2+-induced CBF pathway and cold tolerance. Overall, these findings indicate that melatonin induces RBOHD-dependent H2O2 generation in early response to cold stress. Increased H2O2 promotes [Ca2+]cyt accumulation, which in turn induces H2O2 accumulation via RBOHD, forming a reciprocal positive-regulatory loop that mediates melatonin-induced CBF pathway and subsequent cold tolerance.


2021 ◽  
Author(s):  
Xiao-Hong Hu ◽  
Jing Fan ◽  
Jin-Long Wu ◽  
Shuai Shen ◽  
Jia-Xue He ◽  
...  

Crops with broad-spectrum resistance (BSR) to diseases are highly desirable in agricultural production. Identification of BSR loci and dissection of the underlying mechanisms are fundamental for crop resistance breeding. Here, we describe the identification and characterization of a rice UMP1 allele, which confers race-nonspecific BSR against blast pathogen Magnaporthe oryzae. OsUMP1 encodes a proteasome maturation factor that contributes to 26S proteasome abundance and activity in rice. Modulation of OsUMP1 expression leads to proteome changes, particularly affects the amounts and activities of H2O2-degrading enzymes. Consequently, H2O2 accumulation and disease resistance are enhanced in OsUMP1-overexpressing rice but reduced in loss-of-function mutants. Elevation of OsUMP1 expression also promotes rice resistance to foliar pathogens Rhizoctonia solani and Xanthomonas oryzae pv. oryzae and a floral pathogen Ustilaginoidea virens without observable yield penalty. These results indicate a BSR pathway linking the proteasome machinery and H2O2 homeostasis, and provide a candidate gene for balancing BSR and yield traits in rice breeding.


2021 ◽  
Vol 22 (5) ◽  
pp. 2287
Author(s):  
Mengsheng Deng ◽  
Jie Peng ◽  
Jie Zhang ◽  
Shuang Ran ◽  
Chengcheng Cai ◽  
...  

Potato tuber dormancy is critical for the post-harvest quality. Snakin/Gibberellic Acid Stimulated in Arabidopsis (GASA) family genes are involved in the plants’ defense against pathogens and in growth and development, but the effect of Snakin-2 (SN2) on tuber dormancy and sprouting is largely unknown. In this study, a transgenic approach was applied to manipulate the expression level of SN2 in tubers, and it demonstrated that StSN2 significantly controlled tuber sprouting, and silencing StSN2 resulted in a release of dormancy and overexpressing tubers showed a longer dormant period than that of the control. Further analyses revealed that the decrease expression level accelerated skin cracking and water loss. Metabolite analyses revealed that StSN2 significantly down-regulated the accumulation of lignin precursors in the periderm, and the change of lignin content was documented, a finding which was consistent with the precursors’ level. Subsequently, proteomics found that cinnamyl alcohol dehydrogenase (CAD), caffeic acid O-methyltransferase (COMT) and peroxidase (Prx), the key proteins for lignin synthesis, were significantly up-regulated in silencing lines, and gene expression and enzyme activity analyses also supported this effect. Interestingly, we found that StSN2 physically interacts with three peroxidases catalyzing the oxidation and polymerization of lignin. In addition, SN2 altered the hydrogen peroxide (H2O2) content and the activities of superoxide dismutase (SOD) and catalase (CAT). These results suggest that StSN2 negatively regulates lignin biosynthesis and H2O2 accumulation, and ultimately inhibits the sprouting of potato tubers.


Plant Science ◽  
2021 ◽  
Vol 303 ◽  
pp. 110761
Author(s):  
Hao Li ◽  
Yanliang Guo ◽  
Zhixiang Lan ◽  
Zixing Zhang ◽  
Golam Jalal Ahammed ◽  
...  

Author(s):  
Xiangyu Meng ◽  
Xuezhong Zhang ◽  
Yunfeng Lei ◽  
Dongwei Cao ◽  
Zhifei Wang

A new therapeutic nanoplatform based on Dox@Cu–Met NPs was constructed, which could reduce the consumption of O2 and elevate H2O2 content for effective chemo/chemodynamic synergistic therapy.


2020 ◽  
Vol 21 (16) ◽  
pp. 5767
Author(s):  
Yuting Hu ◽  
Shengfu Zhong ◽  
Min Zhang ◽  
Yinping Liang ◽  
Guoshu Gong ◽  
...  

Photosynthesis is not only a primary generator of reactive oxygen species (ROS) but also a component of plant defence. To determine the relationships among photosynthesis, ROS, and defence responses to powdery mildew in wheat, we compared the responses of the Pm40-expressing wheat line L658 and its susceptible sister line L958 at 0, 6, 12, 24, 48, and 72 h post-inoculation (hpi) with powdery mildew via analyses of transcriptomes, cytology, antioxidant activities, photosynthesis, and chlorophyll fluorescence parameters. The results showed that H2O2 accumulation in L658 was significantly greater than that in L958 at 6 and 48 hpi, and the enzymes activity and transcripts expression of peroxidase and catalase were suppressed in L658 compared with L958. In addition, the inhibition of photosynthesis in L658 paralleled the global downregulation of photosynthesis-related genes. Furthermore, the expression of the salicylic acid-related genes non-expressor of pathogenesis related genes 1 (NPR1), pathogenesis-related 1 (PR1), and pathogenesis-related 5 (PR5) was upregulated, while the expression of jasmonic acid- and ethylene-related genes was inhibited in L658 compared with L958. In conclusion, the downregulation of photosynthesis-related genes likely led to a decline in photosynthesis, which may be combined with the inhibition of peroxidase (POD) and catalase (CAT) to generate two stages of H2O2 accumulation. The high level of H2O2, salicylic acid and PR1 and PR5 in L658 possible initiated the hypersensitive response.


2020 ◽  
Vol 466 ◽  
pp. 228342 ◽  
Author(s):  
Fengxia Deng ◽  
Sixing Li ◽  
Yulin Cao ◽  
M.A. Fang ◽  
Jianhua Qu ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 653
Author(s):  
Qingbo Zheng ◽  
Yakun Chen ◽  
Xiaolin Jia ◽  
Yi Wang ◽  
Ting Wu ◽  
...  

Plastid-nucleus retrograde signaling (PNRS) play essential roles in regulating nuclear gene expression during plant growth and development. Excessive reactive oxygen species can trigger PNRS. We previously reported that in apple (Malus domestica Borkh.) seedlings, the expression of microRNA156 (miR156) was significantly low in the adult phase, which was accompanied by high levels of hydrogen peroxide (H2O2) accumulation in chloroplasts. However, it was unclear whether adult-phase-specific chloroplast H2O2 may induce PNRS and affect miR156 expression, or miR156 triggers adult phase PNRS during the ontogenesis. In this paper, we examined the relationship between miR156 levels and six PNRS components in juvenile and adult phase leaves from ‘Zisai Pearl’בRed Fuji’ hybrids. We found that PNRS generated by singlet oxygen (1O2), the photosynthetic redox state, methylerythritol cyclodiphosphate (MEcPP), SAL1-3-phosphoadenosine 5-phosphate (PAP) and WHIRLY1 were not involved. The accumulation of Mg-protoporphyrin IX (Mg-Proto IX), the expression of the synthetic genes MdGUN5 and MdGUN6, and Mg-Proto IX PNRS related nuclear genes increased with ontogenesis. These changes were negatively correlated with miR156 expression. Manipulating Mg-Proto IX synthesis with 5-aminolevulinic acid (ALA) or gabaculine did not affect miR156 expression in vitro shoots. In contrast, modulating miR156 expression via MdGGT1 or MdMIR156a6 transgenesis led to changes in Mg-Proto IX contents and the corresponding gene expressions. It was concluded that the Mg-Proto IX PNRS was regulated downstream of miR156 regardless of adult-phase-specific plastid H2O2 accumulation. The findings may facilitate the understanding of the mechanism of ontogenesis in higher plants.


Sign in / Sign up

Export Citation Format

Share Document