Hydrogen sulfide induced by hydrogen peroxide mediates darkness-induced stomatal closure in Arabidopsis thaliana
Abstract Background Whether stomatal movement by darkness in Arabidopsis thaliana is mediated by hydrogen sulfide (H2S) is undiscovered yet, so the interaction between hydrogen peroxide (H2O2) and H2S in the process needs to be elucidated. Results Our results indicated that H2S modulators aminooxy acetic acid (AOA), potassium pyruvate (N3H3KO3) + ammonia (NH3), hydroxylamine (NH2OH), and hypotaurine (HT) inhibited darkness-induced stomatal closure, H2S generation and L-/D-cysteine desulfhydrase (L-/D-CDes) activity increased in wild-type A. thaliana leaves. Darkness induced stomatal closure in wild-type plants, but failed in Atl-cdes and Atd-cdes mutants. Additionally, both L-/D-CDes activity and H2S content were significantly decreased after applying H2O2 modulators salicylhydroxamic acid (SHAM), ascorbic acid (ASA), diphenylene iodonium (DPI), and catalase (CAT) in darkness, but there was almost no effects on H2O2 levels in the presence of AOA, C3H3KO3+NH3, NH2OH, and HT of wild-type plants in darkness. Moreover, darkness couldn't increase H2S content and L-/D-CDes activity of AtrbohF and AtrbohD/F mutants leaves, but increased H2O2 levels in Atl-cdes and Atd-cdes guard cells. Conclusions We observed that L-/D-CDes-generated H2S mediates stomatal closure by darkness, and functions downstream of H2O2 in A. thaliana.