The continuing challenge of phylogenetic relationships in Terebelliformia (Annelida : Polychaeta)

2013 ◽  
Vol 27 (2) ◽  
pp. 186 ◽  
Author(s):  
João Miguel de Matos Nogueira ◽  
Kirk Fitzhugh ◽  
Pat Hutchings

A comprehensive phylogenetic analysis of the Terebellidae and related families was undertaken. Type material of all genera of Terebellinae was examined, together with representatives of nearly all genera of remaining Terebellidae subfamilies, and representatives of the families that have been traditionally regarded as being closely related, comprising the Terebelliformia. In total, 85 species were coded using 118 subjects (‘characters’) and 286 subject–predicate relations (‘states’). The results indicate: (1) the paraphyly of Terebellidae by the placements of Trichobranchidae, Ampharetidae, Alvinellidae and Pectinariidae within that clade; (2) the occurrences of Thelepodinae as separate clades, consistent with groups ‘A’ and ‘B’ recognised by Nogueira et al. (2010a); and (3) the monophyly of Polycirrinae and Terebellinae. The previously considered subfamilies of Terebellidae are raised to familial level and a new family is described. Revised definitions are provided for: Terebelliformia, Polycirridae, stat. nov., Telothelepodidae, fam. nov., Terebellidae emend., and Thelepodidae, stat. nov., along with a discussion of character evolution in the Terebellidae.

2021 ◽  
Author(s):  
Huang Shi-Ke ◽  
Kevin D. Hyde ◽  
Ausana Mapook ◽  
Sajeewa S.N. Maharachchikumbura ◽  
D. Jayarama Bhat ◽  
...  

Abstract Sordariomycetes is an earlier and one of the widely distributed class of Ascomycota. The class was initially classified based on morphology in having inoperculate and unitunicate asci. With the development of DNA based phylogenetic analysis, several undetermined or polyphyletic members of Sordariomycetes were reclassified. However, not all species belonging to this class have been sequenced and analyzed. There are a number of species, especially those old and poorly studied ones which have never been sequenced before and not even recollected again for further taxonomic verification. One of the main objective in this study is to revise and update the taxonomy of several well-known old and poorly studied species whose classification are still obscure. Herein, we re-examined the type materials and/or authentic specimens together to explore 74 relatively poorly-studied genera, which mainly belong to Boliniales, Calosphaeriales, Chaetosphaeriales, Jobellisiales, and Sordariales classified under Diaporthomycetidae and Sordariomycetidae. We provide descriptions, notes, figures and/or drawings and discussed their phylogenetic relationships. As a result, the monotypic Jobellisiales is transferred from Hypocreomycetidae to Diaporthomycetidae. Based on phylogenetic analysis, the polyphyletic Lasiosphaeriaceae is divided into five families, Bombardiaceae (Apodospora, Bombardia, Bombardioidea and Fimetariella), Lasiosphaeriaceae (Anopodium, Bellojisia, Corylomyces, Lasiosphaeria, Mammaria and Zopfiella), Lasiosphaeridaceae (Lasiosphaeris), Strattoniaceae (Strattonia) and Zygospermellaceae (Episternus and Zygospermella). In addition, a new family Neoschizotheciaceae is established based on Neoschizothecium. Analysis of the type species of Boothiella, Stellatospora, Sulcatistroma and Tengiomyces placed them in Sordariaceae, Chaetomiaceae, Hypocreales and Coronophorales, respectively. We classify the genera lacking molecular data based on their morphology and expect them to be recollected; that is, Kacosphaeria in Calosphaeriales; Arnium, Biconiosporella, Camptosphaeria, Diffractella, Emblemospora, Eosphaeria, Periamphispora, Ramophialophora, Synaptospora and Tripterosporella in Sordariales; Conidiotheca in Sordariomycetes; Copromyces, Effetia, Endophragmiella and Tulipispora are accommodated in Ascomycota. Besides, we establish a new genus Neoschizothecium based on phylogenetic analysis. New combinations proposed include: Camaropella amorpha, Cam. microspora, Cam. plana, Cladorrhinum grandiusculum, Cla. leucotrichum, Cla. terricola, Cla. olerum, Helminthosphaeria plumbea, Immersiella hirta, Jugulospora minor, Lasiosphaeris arenicola, Neoschizothecium aloides, Neo. carpinicola, Neo. conicum, Neo. curvisporum, Neo. fimbriatum, Neo. glutinans, Neo. inaequale, Neo. minicaudum, Neo. selenosporum, Neo. tetrasporum, Neurospora autosteira, Podospora brunnescens, P. flexuosa, P. jamaicensis, P. hamata, P. macrospora, P. spinosa, Strattonia petrogale and Triangularia microsclerotigena, T. nannopodalis, T. praecox, T. samala, T. tarvisina, T. unicaudata, T. yaeyamensis. New epithets are proposed for Apiorhynchostoma apiosporum and Podospora dacryoidea.


2005 ◽  
Vol 83 (10) ◽  
pp. 1329-1339 ◽  
Author(s):  
Javier Garcia-Cruz ◽  
Victoria Sosa

Govenia Lindl. (Orchidaceae) is a neotropical terrestrial deciduous genus of approximately 28 species of the higher Epidendroids. To determine if Govenia is monophyletic and what are the relationships among its species, a phylogenetic analysis based on a detailed morphological study was conducted. Furthermore, the evolution of eight vegetative and floral characters is explored and explained in relation to pollination syndrome. Three most parsimonious trees were retrieved from heuristic searches. Govenia is corroborated as monophyletic with six recognized groups: three monotypic groups (G. ciliilabia, G. powellii, and G. boliviensis) and three major clades (Purpusii, Capitata, and Superba groups). The Purpusii group is characterized by a well-developed rhizome, a solitary leaf, and 3–12 white flowers. The Capitata group is characterized by the lack of a rhizome, two leaves, and 10–30 white flowers. The Superba group is characterized by the lack of a rhizome, two leaves, and numerous yellow flowers. Two trends were identified in Govenia. The first trend is represented by plants with a rhizome and reduced leaf and flower numbers that occur in taxa from the Purpusii group. The second trend has been to increase inflorescence length and the number of flowers, to change flower colour from white to yellow with an ascending position of the column, and is represented in taxa from the Superba group. The evolution of floral characters leads to the hypothesis that there was a shift in pollinator from small bumblebees to larger bumblebees.


2015 ◽  
Vol 29 (2) ◽  
pp. 124 ◽  
Author(s):  
Daniele Polotow ◽  
Anthea Carmichael ◽  
Charles E. Griswold

Phylogenetic relationships within the superfamily Lycosoidea are investigated through the coding and analysis of character data derived from morphology, behaviour and DNA sequences. In total, 61 terminal taxa were studied, representing most of the major groups of the RTA-clade (i.e. spiders that have a retrolateral tibial apophysis on the male palp). Parsimony and model-based approaches were used, and several support values, partitions and implied weighting schemes were explored to assess clade stability. The morphological–behavioural matrix comprised 96 characters, and four gene fragments were used: 28S (~737 base pairs), actin (~371 base pairs), COI (~630 base pairs) and H3 (~354 base pairs). Major conclusions of the phylogenetic analysis include: the concept of Lycosoidea is restricted to seven families: Lycosidae, Pisauridae, Ctenidae, Psechridae, Thomisidae, Oxyopidae (but Ctenidae and Pisauridae are not monophyletic) and also Trechaleidae (not included in the analysis); the monophyly of the ‘Oval Calamistrum clade’ (OC-clade) appears to be unequivocal, with high support, and encompassing the Lycosoidea plus the relimited Zoropsidae and the proposed new family Udubidae (fam. nov.); Zoropsidae is considered as senior synonym of Tengellidae and Zorocratidae (syn. nov.); Viridasiinae (rank nov.) is raised from subfamily to family rank, excluded from the Ctenidae and placed in Dionycha. Our quantitative phylogenetic analysis confirms the synonymy of Halidae with Pisauridae. The grate-shaped tapetum appears independently at least three times and has a complex evolutionary history, with several reversions.


2021 ◽  
Vol 108 (4) ◽  
pp. 664-679
Author(s):  
Juan C. Penagos Zuluaga ◽  
Henk Werff ◽  
Brian Park ◽  
Deren A. R. Eaton ◽  
Liza S. Comita ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 668
Author(s):  
Tinghao Yu ◽  
Yalin Zhang

More studies are using mitochondrial genomes of insects to explore the sequence variability, evolutionary traits, monophyly of groups and phylogenetic relationships. Controversies remain on the classification of the Mileewinae and the phylogenetic relationships between Mileewinae and other subfamilies remain ambiguous. In this study, we present two newly completed mitogenomes of Mileewinae (Mileewa rufivena Cai and Kuoh 1997 and Ujna puerana Yang and Meng 2010) and conduct comparative mitogenomic analyses based on several different factors. These species have quite similar features, including their nucleotide content, codon usage of protein genes and the secondary structure of tRNA. Gene arrangement is identical and conserved, the same as the putative ancestral pattern of insects. All protein-coding genes of U. puerana began with the start codon ATN, while 5 Mileewa species had the abnormal initiation codon TTG in ND5 and ATP8. Moreover, M. rufivena had an intergenic spacer of 17 bp that could not be found in other mileewine species. Phylogenetic analysis based on three datasets (PCG123, PCG12 and AA) with two methods (maximum likelihood and Bayesian inference) recovered the Mileewinae as a monophyletic group with strong support values. All results in our study indicate that Mileewinae has a closer phylogenetic relationship to Typhlocybinae compared to Cicadellinae. Additionally, six species within Mileewini revealed the relationship (U. puerana + (M. ponta + (M. rufivena + M. alara) + (M. albovittata + M. margheritae))) in most of our phylogenetic trees. These results contribute to the study of the taxonomic status and phylogenetic relationships of Mileewinae.


2005 ◽  
Vol 26 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Francisca do Val ◽  
Paulo Nuin

AbstractThe systematics and phylogenetic relationships of the family Leptodactylidae are controversial as is the intrafamilial phylogeny of the leptodactylids. Here we analyze the relationships of the leptodactylid subfamily Hylodinae. This subfamily has been considered to be monophyletic and composed of three genera, Hylodes, Crossodactylus and Megaelosia. In the present study 49 characters were used, based on different studies on Leptodactylidae phylogeny. Maximum parsimony methods with unweighted and successively weighted characters were used to estimate the phylogeny of the Hylodinae. Upon analysis, the data provided further evidence of the monophyletic status of the three genera, with Megaelosia being the basal genus and the other two genera being sister taxa. The analysis with successive weighting results in a more resolved topology of the species subgroups of the genus Hylodes and separates this genus from Crossodactylus and confirms that the hylodines are monophyletic.


2018 ◽  
Vol 285 (1892) ◽  
pp. 20181784 ◽  
Author(s):  
Melanie J. Hopkins ◽  
Katherine St John

The use of discrete character data for disparity analyses has become more popular, partially due to the recognition that character data describe variation at large taxonomic scales, as well as the increasing availability of both character matrices co-opted from phylogenetic analysis and software tools. As taxonomic scope increases, the need to describe variation leads to some characters that may describe traits not found across all the taxa. In such situations, it is common practice to treat inapplicable characters as missing data when calculating dissimilarity matrices for disparity studies. For commonly used dissimilarity metrics like Wills's GED and Gower's coefficient, this can lead to the reranking of pairwise dissimilarities, resulting in taxa that share more primary character states being assigned larger dissimilarity values than taxa that share fewer. We introduce a family of metrics that proportionally weight primary characters according to the secondary characters that describe them, effectively eliminating this problem, and compare their performance to common dissimilarity metrics and previously proposed weighting schemes. When applied to empirical datasets, we confirm that choice of dissimilarity metric frequently affects the rank order of pairwise distances, differentially influencing downstream macroevolutionary inferences.


2013 ◽  
Vol 100 (5) ◽  
pp. 916-929 ◽  
Author(s):  
D. E. Soltis ◽  
M. E. Mort ◽  
M. Latvis ◽  
E. V. Mavrodiev ◽  
B. C. O'Meara ◽  
...  

1990 ◽  
Vol 38 (5) ◽  
pp. 519 ◽  
Author(s):  
PR Baverstock ◽  
M Krieg ◽  
J Birrell ◽  
GM Mckay

Microcomplement fixation of albumin was used to examine the phylogenetic relationships among the ringtail possums, family Pseudocheiridae. Phylogenetic analysis of the data supports the hypothesis of at least three distinct clades within the family: one containing Petauroides and Hemibelideus; a second consisting of Pseudocheirus herbertensis, Ps. forbesi, Ps. mayeri, and Ps. canescens; and a third containing Ps. archeri, Ps. corinnae, Ps. cupreus and Ps. dahli. The data have not resolved the phylogenetic position of Ps. peregrinus, which may either form a separate clade or lie close to the Ps. archeri clade.


2021 ◽  
pp. SP521-2020-249
Author(s):  
Daran Zheng ◽  
Edmund A. Jarzembowski ◽  
De Zhuo ◽  
André Nel

AbstractHemiphlebiidae are the most basal lestomorphan family following the latest phylogenetic analysis of the Zygoptera: this unique damselfly family today contains one relict species found in the wetlands of Australia. It was, however, very diverse and widespread during the Mesozoic. Nevertheless, very few species were known obscuring the origination and early evolution of the family. Here we propose a new stem hemiphlebioid taxon (Protohemiphlebiidae Zheng, Jarzembowski & Nel, fam. nov.) based on a new genus and two species: Protohemiphlebia zhangi Zheng, Jarzembowski & Nel, sp. nov. and Protohemiphlebia meiyingae Zheng, Jarzembowski & Nel, sp. nov. The new family shares the characters of both Hemiphlebiidae and Coenagrionoidea, but it is more closely related to Hemiphlebiidae in having the pterostigma with a ‘star-shaped’ microsculpture, and AA originating from the wing base slightly distal of Ax0. Protohemiphlebia Zheng, Jarzembowski & Nel, gen. nov. is further considered to belong to the stem group of Hemiphlebioidea, instead of belonging to the Hemiphlebiidae, in possessing pretibial combs and a weakly kinked RP1 below the Pt-brace. The new damselflies will help to calibrate the origin of Hemiphlebiidae, which could be earlier than their current oldest records in the Kimmeridgean (Late Jurassic).


Sign in / Sign up

Export Citation Format

Share Document