The systematics and phylogenetic position of the troglobitic Australian spider genus Troglodiplura (Araneae : Mygalomorphae), with a new classification for Anamidae

2020 ◽  
Author(s):  
Mark S. Harvey ◽  
Michael G. Rix ◽  
Mia J. Hillyer ◽  
Joel A. Huey

Compared with araneomorph spiders, relatively few mygalomorph spiders have evolved an obligate existence in subterranean habitats. The trapdoor spider genus Troglodiplura Main, 1969 and its sole named species T. lowryi Main, 1969 is endemic to caves on the Nullarbor Plain of southern Australia, and is one of the world’s most troglomorphic mygalomorph spiders. However, its systematic position has proved to be difficult to ascertain, largely due to a lack of preserved adults, with all museum specimens represented only by cuticular fragments, degraded specimens or preserved juveniles. The systematic placement of Troglodiplura has changed since it was first described as a member of the Dipluridae, with later attribution to Nemesiidae and then back to Dipluridae. The most recent hypothesis specifically allied Troglodiplura with the Neotropical subfamily Diplurinae, and therefore was assumed to have no close living relatives in Australia. We obtained mitochondrial sequence data from one specimen of Troglodiplura to test these two competing hypotheses, and found that Troglodiplura is a member of the family Anamidae (which was recently separated from the Nemesiidae). We also reassess the morphology of the cuticular fragments of specimens from several different caves, and hypothesise that along with T. lowryi there are four new troglobitic species, here named T. beirutpakbarai Harvey & Rix, T. challeni Harvey & Rix, T. harrisi Harvey & Rix, and T. samankunani Harvey & Rix, each of which is restricted to a single cave system and therefore severely threatened by changing environmental conditions within the caves. The first descriptions and illustrations of the female spermathecae of Troglodiplura are provided. The family Anamidae is further divided into two subfamilies, with the Anaminae Simon containing Aname L. Koch, 1873, Hesperonatalius Castalanelli, Huey, Hillyer & Harvey, 2017, Kwonkan Main, 1983, Swolnpes Main & Framenau, 2009 and Troglodiplura, and the Teylinae Main including Chenistonia Hogg, 1901, Namea Raven, 1984, Proshermacha Simon, 1909, Teyl Main, 1975 and Teyloides Main, 1985. ZooBank Registration: http://zoobank.org/References/2BE2B429-0998-4AFE-9381-B30BDC391E9C

2013 ◽  
Vol 58 (2) ◽  
pp. 467-474 ◽  
Author(s):  
Xiaolan He ◽  
Yu Sun

Abstract The monotypic Pleurocladopsis, endemic to Chile, was established by Schuster in 1964 based on an earlier poorly known species Cephalozia (?) simulans C. Massal. The phylogenetic position of Pleurocladopsis simulans had been considered uncertain until it was placed in the family Schistochilaceae on account of the gynoecial and sporophytic characters. It has been assumed that Pleurocladopsis represents the starting point of evolution in Schistochilaceae. In the present study, the phylogenetic position and taxonomic status of Pleurocladopsis simulans are inferred from phylogenetic analysis of three chloroplast DNA sequence data. The result suggests that the genus was established solely based on the autapomorphic characters, thus obscuring its actual phylogenetic relationship with Schistochila and that these characters are later derived rather than ancestral. The result also confirms that the gynoecial and sporophytic characters are important in taxonomy, but they may be not sufficient at the infrafamilial level and at other lower taxonomic levels. In accordance with the results of the present study, Pleurocladopsis is synonymised with Schistochila, and the new combination Schistochila simulans (C. Massal.) Xiao L. He & Yu Sun is made.


2010 ◽  
Vol 41 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Martin Carr ◽  
Michael Balke ◽  
Marion Kotrba

AbstractThe placement of Diopsina in a monophyletic clade with Diopsis and Eurydiopsis is confirmed and a sister group relationship between Diopsina and Diopsis recovered with moderate support. The clarification of the phylogenetic position of Diopsina nested deeply within Diopsini is of crucial importance for the understanding of the relationships and the evolution of various morphological characters within the family.


2020 ◽  
Vol 103 (1) ◽  
pp. 1-46
Author(s):  
Yuan-Bing Wang ◽  
Yao Wang ◽  
Qi Fan ◽  
Dong-E Duan ◽  
Guo-Dong Zhang ◽  
...  

Abstract The phylogeny and systematics of cordycipitoid fungi have been extensively studied in the last two decades. However, systematic positions of some taxa in the family Cordycipitaceae have not yet been thoroughly resolved. In this study, a new phylogenetic framework of Cordycipitaceae is reconstructed using multigene (nrSSU, nrLSU, tef-1α, rpb1 and rpb2) sequence data with large-scale taxon sampling. In addition, ITS sequence data of species belonging to the Lecanicillium lineage in the family Cordycipitaceae are used to further determine their phylogenetic placements. Based on molecular phylogenetic data together with morphological evidence, two new genera (Flavocillium and Liangia), 16 new species and four new combinations are introduced. In the new genus Flavocillium, one new species F. bifurcatum and three new combinations previously described as Lecanicillium, namely F. acerosium, F. primulinium and F. subprimulinium, are proposed. The genus Liangia is built by the new species Lia. sinensis with Lecanicillium-like asexual morph, isolated from an entomopathogenic fungus Beauveria yunnanensis. Due to the absence of Paecilomyces hepiali, an economically and medically significant fungus, in the earlier phylogenetic analyses, its systematic position has been puzzling in both business and academic communities for a long time. Here, P. hepiali is recharacterized using the holotype material along with seven additional samples. It is assigned to the genus Samsoniella (Cordycipitaceae, Hypocreales) possessing Cordyceps-like sexual morph and Isaria-like asexual morph, and thus a new combination, namely S. hepiali is proposed. An additional nine new species in Samsoniella are described: S. alpina, S. antleroides, S. cardinalis, S. cristata, S. lanmaoa, S. kunmingensis, S. ramosa, S. tortricidae and S. yunnanensis. Four new species in Cordyceps are described: C. chaetoclavata, C. cocoonihabita, C. shuifuensis and C. subtenuipes. Simplicillium yunnanense, isolated from synnemata of Akanthomyces waltergamsii, is described as a new species.


Parasitology ◽  
2010 ◽  
Vol 138 (3) ◽  
pp. 381-393 ◽  
Author(s):  
PAVLA BARTOŠOVÁ ◽  
MARK A. FREEMAN ◽  
HIROSHI YOKOYAMA ◽  
MONICA CAFFARA ◽  
IVAN FIALA

SUMMARYAn amendment of the family Sinuolineidae (Myxosporea) is proposed in order to include a newly described genus Latyspora n. gen. The type species Latyspora scomberomori n. gen. n. sp. is a coelozoic parasite in the kidney tubules of Scomberomorus guttatus. In addition to the morphological and molecular characterization of L. scomberomori n. gen. n. sp., we also present novel SSU rDNA data on Sphaerospora testicularis, a serious parasite of Dicentrarchus labrax. Performed phylogenetic analyses revealed that both species cluster within the marine urinary clade encompassing the representatives with a shared insertion within their V4 SSU rRNA region and grouping according to the shape of their spores’ sutural line and their similar tissue tropism in the host. Sphaerospora testicularis is the closest relative to Parvicapsula minibicornis within the Parvicapsula subclade and L. scomberomori n. gen. n. sp. is the basal species of the Zschokkella subclade. The phylogenetic position of S. testicularis, outwith the basal Sphaerospora sensu stricto clade, and its morphology suggest it being a non-typical Sphaerospora. The sequence data provided on S. testicularis can help in future revisions of the strongly polyphyletic genus Sphaerospora. We recommend re-sequencing of several sphaerosporids as an essential step before such taxonomic changes are accomplished.


2010 ◽  
Vol 23 (4) ◽  
pp. 229 ◽  
Author(s):  
Xiaolan He ◽  
David Glenny

The monotypic genus Perssoniella with P. vitreocincta Herzog, endemic to New Caledonia, possesses a series of unique morphological characters and it has been assumed that the genus, assigned to the family Perssoniellaceae and suborder Perssoniellineae, is very isolated but sister to the family Schistochilaceae. The systematic identity of Perssoniella vitreocincta was studied using DNA sequence data for the chloroplast rbcL, rps4 and trnL-F regions. Our analyses placed Perssoniella vitreocincta within the family Schistochilaceae, and within Schistochila itself, with strong support. It suggests that retaining Perssoniella as an independent genus is untenable and we transfer it to the genus Schistochila. Our results indicate that Perssoniella vitreocincta is not an archaic species, as presupposed earlier. The differentiating characters in Perssoniella are mostly probably later derived, rather than ancestral. Our analyses also placed Pachyschistochila and Paraschistochila within Schistochila, again with strong support. We also transfer these two genera to Schistochila.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Shao ◽  
Qi Gao ◽  
Alan Warren ◽  
Jingyi Wang

The morphology and the regulation of cortical pattern associated with the cell size, division, and phylogenetic position of a new hypotrichous ciliate, Quadristicha subtropica n. sp. collected from a freshwater pond in southern China, were investigated. Quadristicha subtropica n. sp. is characterized as follows: size in vivo 60–115 μm × 25–45 μm; 19–21 adoral membranelles; buccal cirrus near anterior end of endoral and paroral; cirrus IV/3 at about level of buccal vertex; right marginal row begins ahead of buccal vertex; 11–16 right and 12–19 left marginal cirri; and dorsal cilia about 5 μm long. The basic morphogenetic process in Q. subtropica n. sp. is consistent with that of the type species, Quadristicha setigera. Phylogenetic analyses based on small subunit ribosomal DNA sequence data reveal that the systematic position of Q. subtropica n. sp. is rather unstable with low support values across the tree and the genus Quadristicha is not monophyletic.


2021 ◽  
Vol 5 (1) ◽  
pp. 141-150
Author(s):  
Gaurang G. Gowande ◽  
Harshal S. Bhosale ◽  
Pushkar U. Phansalkar ◽  
Mandar Sawant ◽  
Zeeshan A. Mirza

The montane agamid species Pseudocalotes austeniana has had a complicated taxonomic history, as the species was initially described as a member of the genus Salea Gray, 1845. Later, the species was placed in a monotypic genus Mictopholis Smith, 1935, which was erected only to include this species; however, the species was later on transferred to the genus Pseudocalotes Fitzinger, 1843, owing to the morphological similarities, and lack of strong characters to diagnose the genus Mictopholis. Nonetheless, its precise phylogenetic and systematic position has remained unresolved due to the lack of molecular sequence data. During a herpetological expedition to Arunachal Pradesh, specimens of P. austeniana were collected from the hills near the type locality. The mitochondrial 16S rRNA, ND2 and ND4, and the nuclear RAG1 regions were subjected to molecular phylogenetics. Maximum Likelihood and Bayesian Inference gene trees revealed that P. austeniana is a member of the subfamily Draconinae. The analyses showed that the genus Pseudocalotes is polyphyletic, and P. austeniana was embedded within the genus Japalura Gray, 1853 sensu stricto. We here, thus, propose to transfer the species P. austeniana to the genus Japlaura, as Japalura austenianacomb. nov. Biogeographic and evolutionary significance of the findings are discussed.


2022 ◽  
Vol 25 ◽  
pp. 16-21
Author(s):  
Thomas J. Simonsen ◽  
Marcus Glahder ◽  
Thomas Pape ◽  
Kent Olsen ◽  
Marie Djernæs

We reconstruct a phylogenetic framework for the zygopteran family Lestidae based on a molecular dataset comprised of sequence data from the genes COI, 16S, 18S, 28S, and ITS1+2 from 41 ingroup taxa and 8 outgroup taxa with emphasis on the systematic position of the genus Chalcolestes Kennedy. We recover Lestidae as monophyletic with good statistical support. The family falls into two subequal clades. One, comprising the genus Sympecma Burmeister and Lestes Leach sensu lato (including the genus Archi­lestes Selys) is poorly to moderately supported. While the other, comprising the genera Austrolestes Tillyard, Indolestes Fraser, Orolestes McLachlan, and Chalcolestes is strongly supported. Chalcolestes is recovered as sister to the Oriental genus Orolestes with strong support. Our results thus support that Chalcolestes is a valid genus not closely related to Lestes. Monophyly of Lestes requires inclusion of the New World genus Archilestes, and our results support the need for a thorough revision of Lestes.


2003 ◽  
Vol 35 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Matthias Schultz ◽  
Burkhard Büdel

AbstractThe systematic position of the lichen genus Heppia in the order Lichinales was investigated. 18S rDNA sequence data were analyzed using a Bayesian approach to infer phylogeny using Markov chain Monte Carlo methods. The Lichinales are divided at family level into the sister groups Lichinaceae and Peltulaceae. The genus Heppia forms a highly supported clade in the family Lichinaceae. It is shown that the genus Heppia is morphologically well circumscribed within the Lichinaceae. As a nomenclatural consequence, the family name Heppiaceae is placed into synonymy under the older name Lichinaceae.


Sign in / Sign up

Export Citation Format

Share Document