Occurrence of Hypolimnetic blooms of the Purple Sulfur Bacterium, Thiopedia rosea, and the Green Sulfur Bacterium, Chlorobium limicola, in an Australian Reservoir

1990 ◽  
Vol 41 (2) ◽  
pp. 223 ◽  
Author(s):  
RJ Banens

Seasonal blooms of green and purple sulfur bacteria were found in the anoxic hypolimnion of Puddledock Reservoir, a small, eutrophic water-supply storage in north-eastern N.S.W. These blooms were dominated by the green sulfur bacterium C. limicola, and were sometimes overlain by a bloom of the purple sulfur bacterium T. rosea. They generally formed a plate just below the oxycline at a depth of between 4 and 6 m in the shallow, sulfuretted, nutrient-rich hypolimnion. The blooms increased in density from about mid summer until holomixis, when the return to oxygenated conditions killed the sulfur bacteria. Maximum bacterial chlorophyll levels varied with the light regime, but typically reached 250�g L-1, although the maximum recorded value was 410�g L-1. The Secchi transparency during summer stratification was variable, but was typically around 1.2 m, with extremes ranging from 4.5 m on one occasion to as low as 0.8 m for an extended period, as a result of epilimnetic algal levels of 40�g L-1 chlorophyll. Gilvin (g440) levels during these bacterial blooms were always less than 2.5 m-1. Sulfur bacteria were absent during one summer; this was attributed to a dramatic change in the light regime as a result of a major inflow event. The latter resulted in a Secchi depth of 0.75 m associated with very high gilvin levels of 7.5-11.0 m-1 and high inorganic turbidity levels, which would have resulted in a very dim red light regime in the hypolimnion. This study is the first report of a bloom of purple sulfur bacteria in Australian fresh waters, and the first to detail the occurrence of blooms of green and purple sulfur bacteria in a seasonally stratifying water body.

2019 ◽  
Author(s):  
Petra Pjevac ◽  
Stefan Dyksma ◽  
Tobias Goldhammer ◽  
Izabela Mujakić ◽  
Michal Koblížek ◽  
...  

AbstractSulfide-driven anoxygenic photosynthesis is an ancient microbial metabolism that contributes significantly to inorganic carbon fixation in stratified, sulfidic water bodies. Methods commonly applied to quantify inorganic carbon fixation by anoxygenic phototrophs, however, cannot resolve the contributions of distinct microbial populations to the overall process. We implemented a straightforward workflow, consisting of radioisotope labeling and flow cytometric cell sorting based on the distinct autofluorescence of bacterial photo pigments, to discriminate and quantify contributions of co-occurring anoxygenic phototrophic populations toin situinorganic carbon fixation in environmental samples. This allowed us to assign 89.3 ±7.6% of daytime inorganic carbon fixation by anoxygenic phototrophs in Lake Rogoznica (Croatia) to an abundant chemocline-dwelling population of green sulfur bacteria (dominated byChlorobium phaeobacteroides), whereas the co-occurring purple sulfur bacteria (Halochromatiumsp.) contributed only 1.8 ±1.4%. Furthermore, we obtained two metagenome assembled genomes of green sulfur bacteria and one of a purple sulfur bacterium which provides the first genomic insights into the genusHalochromatium, confirming its high metabolic flexibility and physiological potential for mixo-and heterotrophic growth.


2004 ◽  
Vol 186 (16) ◽  
pp. 5210-5220 ◽  
Author(s):  
Niels-Ulrik Frigaard ◽  
Julia A. Maresca ◽  
Colleen E. Yunker ◽  
A. Daniel Jones ◽  
Donald A. Bryant

ABSTRACT The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C. tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), ζ-carotene desaturase (crtQ/CT1414), γ-carotene desaturase (crtU/CT0323), carotenoid 1′,2′-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants by converting phytoene into lycopene using two plant-like desaturases (CrtP and CrtQ) and a plant-like cis-trans isomerase (CrtH) and thus differs from the pathway known in all other bacteria. In contrast to the situation in cyanobacteria and plants, the construction of a crtB mutant completely lacking carotenoids demonstrates that carotenoids are not essential for photosynthetic growth of green sulfur bacteria. However, the bacteriochlorophyll a contents of mutants lacking colored carotenoids (crtB, crtP, and crtQ mutants) were decreased from that of the wild type, and these mutants exhibited a significant growth rate defect under all light intensities tested. Therefore, colored carotenoids may have both structural and photoprotection roles in green sulfur bacteria. The ability to manipulate the carotenoid composition so dramatically in C. tepidum offers excellent possibilities for studying the roles of carotenoids in the light-harvesting chlorosome antenna and iron-sulfur-type (photosystem I-like) reaction center. The phylogeny of carotenogenic enzymes in green sulfur bacteria and green filamentous bacteria is also discussed.


2005 ◽  
Vol 71 (12) ◽  
pp. 8049-8060 ◽  
Author(s):  
Ann K. Manske ◽  
Jens Glaeser ◽  
Marcel M. M. Kuypers ◽  
Jörg Overmann

ABSTRACT The biomass, phylogenetic composition, and photoautotrophic metabolism of green sulfur bacteria in the Black Sea was assessed in situ and in laboratory enrichments. In the center of the western basin, bacteriochlorophyll e (BChl e) was detected between depths of 90 and 120 m and reached maxima of 54 and 68 ng liter−1. High-pressure liquid chromatography analysis revealed a dominance of farnesyl esters and the presence of four unusual geranyl ester homologs of BChl e. Only traces of BChl e (8 ng liter−1) were found at the northwestern slope of the Black Sea basin, where the chemocline was positioned at a significantly greater depth of 140 m. Stable carbon isotope fractionation values of farnesol indicated an autotrophic growth mode of the green sulfur bacteria. For the first time, light intensities in the Black Sea chemocline were determined employing an integrating quantum meter, which yielded maximum values between 0.0022 and 0.00075 μmol quanta m−2 s−1 at the top of the green sulfur bacterial layer around solar noon in December. These values represent by far the lowest values reported for any habitat of photosynthetic organisms. Only one 16S rRNA gene sequence type was detected in the chemocline using PCR primers specific for green sulfur bacteria. This previously unknown phylotype groups with the marine cluster of the Chlorobiaceae and was successfully enriched in a mineral medium containing sulfide, dithionite, and freshly prepared yeast extract. Under precisely controlled laboratory conditions, the enriched green sulfur bacterium proved to be capable of exploiting light intensities as low as 0.015 μmol quanta m−2 s−1 for photosynthetic 14CO2 fixation. Calculated in situ doubling times of the green sulfur bacterium range between 3.1 and 26 years depending on the season, and anoxygenic photosynthesis contributes only 0.002 to 0.01% to total sulfide oxidation in the chemocline. The stable population of green sulfur bacteria in the Black Sea chemocline thus represents the most extremely low-light-adapted and slowest-growing type of phototroph known to date.


2006 ◽  
Vol 188 (17) ◽  
pp. 6217-6223 ◽  
Author(s):  
Julia A. Maresca ◽  
Donald A. Bryant

ABSTRACT The green sulfur bacterium Chlorobium tepidum produces chlorobactene as its primary carotenoid. Small amounts of chlorobactene are hydroxylated by the enzyme CrtC and then glucosylated and acylated to produce chlorobactene glucoside laurate. The genes encoding the enzymes responsible for these modifications of chlorobactene, CT1987, and CT0967, have been identified by comparative genomics, and these genes were insertionally inactivated in C. tepidum to verify their predicted function. The gene encoding chlorobactene glucosyltransferase (CT1987) has been named cruC, and the gene encoding chlorobactene lauroyltransferase (CT0967) has been named cruD. Homologs of these genes are found in the genomes of all sequenced green sulfur bacteria and filamentous anoxygenic phototrophs as well as in the genomes of several nonphotosynthetic bacteria that produce similarly modified carotenoids. The other bacteria in which these genes are found are not closely related to green sulfur bacteria or to one another. This suggests that the ability to synthesize modified carotenoids has been a frequently transferred trait.


2005 ◽  
Vol 71 (7) ◽  
pp. 3544-3550 ◽  
Author(s):  
Mauro Tonolla ◽  
Raffaele Peduzzi ◽  
Dittmar Hahn

ABSTRACT Population analyses in water samples obtained from the chemocline of crenogenic, meromictic Lake Cadagno, Switzerland, in October for the years 1994 to 2003 were studied using in situ hybridization with specific probes. During this 10-year period, large shifts in abundance between purple and green sulfur bacteria and among different populations were obtained. Purple sulfur bacteria were the numerically most prominent phototrophic sulfur bacteria in samples obtained from 1994 to 2001, when they represented between 70 and 95% of the phototrophic sulfur bacteria. All populations of purple sulfur bacteria showed large fluctuations in time with populations belonging to the genus Lamprocystis being numerically much more important than those of the genera Chromatium and Thiocystis. Green sulfur bacteria were initially represented by Chlorobium phaeobacteroides but were replaced by Chlorobium clathratiforme by the end of the study. C. clathratiforme was the only green sulfur bacterium detected during the last 2 years of the analysis, when a shift in dominance from purple sulfur bacteria to green sulfur bacteria was observed in the chemocline. At this time, numbers of purple sulfur bacteria had decreased and those of green sulfur bacteria increased by about 1 order of magnitude and C. clathratiforme represented about 95% of the phototrophic sulfur bacteria. This major change in community structure in the chemocline was accompanied by changes in profiles of turbidity and photosynthetically available radiation, as well as for sulfide concentrations and light intensity. Overall, these findings suggest that a disruption of the chemocline in 2000 may have altered environmental niches and populations in subsequent years.


Author(s):  
Michael T. Madigan ◽  
Megan L. Kempher ◽  
Kelly S. Bender ◽  
Deborah O. Jung ◽  
W. Matthew Sattley ◽  
...  

Hot Lake is a small heliothermal and hypersaline lake in far north-central Washington State (USA) and is limnologically unusual because MgSO4 rather than NaCl is the dominant salt. In late summer, the Hot Lake metalimnion becomes distinctly green from blooms of planktonic phototrophs. In a study undertaken over 60 years ago, these blooms were predicted to include green sulfur bacteria but no cultures were obtained. We sampled Hot Lake and established enrichment cultures for phototrophic sulfur bacteria in MgSO4-rich sulfidic media. Most enrichments turned green or red within two weeks, and from green-colored enrichments, pure cultures of a lobed green sulfur bacterium (Phylum Chlorobi) were isolated. Phylogenetic analyses showed the organism to be a species of the prosthecate green sulfur bacterium Prosthecochloris. Cultures of this Hot Lake phototroph were halophilic and tolerated high levels of sulfide and MgSO4. In addition, unlike all recognized species of Prosthecochloris, the Hot Lake isolates grew at temperatures up to 45°C, indicating an adaptation to the warm summer temperatures of the lake. Photoautotrophy by Hot Lake green sulfur bacteria may contribute dissolved organic matter to anoxic zones of the lake, and their diazotrophic capacity may provide a key source of bioavailable nitrogen, as well.


2019 ◽  
Author(s):  
Srijak Bhatnagar ◽  
Elise S. Cowley ◽  
Sebastian H. Kopf ◽  
Sherlynette Pérez Castro ◽  
Sean Kearney ◽  
...  

AbstractPhototrophic microbial mats commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. Here we show that similar coexistence patterns and ecological niches can occur in suspended phototrophic blooms of an organic-rich estuary. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophicCyanobacteria, the middle and lower parts were dominated by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We found multiple uncultured phototrophic lineages and present metagenome-assembled genomes of two uncultured organisms within theChlorobiales. Apparently, thoseChlorobialespopulations were affected byMicroviridaeviruses. We suggest a sulfur cycle within the bloom in which elemental sulfur produced by phototrophs is reduced to sulfide byDesulfuromonas sp. These findings improve our understanding of the ecology and ecophysiology of phototrophic blooms and their impact on biogeochemical cycles.


2003 ◽  
Vol 69 (7) ◽  
pp. 3739-3750 ◽  
Author(s):  
Jens Glaeser ◽  
Jörg Overmann

ABSTRACT A dense population of the phototrophic consortium “Pelochromatium roseum” was investigated in the chemocline of a temperate holomictic lake (Lake Dagow, Brandenburg, Germany). Fluorescence in situ hybridization revealed that the brown epibionts of “P. roseum” constituted up to 37% of the total bacterial cell number and up to 88% of all green sulfur bacteria present in the chemocline. Specific amplification of 16S rRNA gene fragments of green sulfur bacteria and denaturing gradient gel electrophoresis fingerprinting yielded a maximum of four different DNA bands depending on the year of study, indicating that the diversity of green sulfur bacteria was low. The 465-bp 16S rRNA gene sequence of the epibiont of “P. roseum” was obtained after sorting of individual consortia by micromanipulation, followed by a highly sensitive PCR. The sequence obtained represents a new phylotype within the radiation of green sulfur bacteria. Maximum light-dependent H14CO3 − fixation in the chemocline in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea suggested that there was anaerobic autotrophic growth of the green sulfur bacteria. The metabolism of the epibionts was further studied by determining stable carbon isotope ratios (δ13C) of their specific biomarkers. Analysis of photosynthetic pigments by high-performance liquid chromatography revealed the presence of high concentrations of bacteriochlorophyll (BChl) e and smaller amounts of BChl a and d and chlorophyll a in the chemocline. Unexpectedly, isorenieratene and β-isorenieratene, carotenoids typical of other brown members of the green sulfur bacteria, were absent. Instead, four different esterifying alcohols of BChl e were isolated as biomarkers of green sulfur bacterial epibionts, and their δ13C values were determined. Farnesol, tetradecanol, hexadecanol, and hexadecenol all were significantly enriched in 13C compared to bulk dissolved and particulate organic carbon and compared to the biomarkers of purple sulfur bacteria. The difference between the δ13C values of farnesol, the major esterifying alcohol of BChl e, and CO2 was −7.1%, which provides clear evidence that the mode of growth of the green sulfur bacterial epibionts of “P. roseum” in situ is photoautotrophic.


Microbiology ◽  
2009 ◽  
Vol 155 (8) ◽  
pp. 2766-2774 ◽  
Author(s):  
Bettina Franz ◽  
Thomas Gehrke ◽  
Henning Lichtenberg ◽  
Josef Hormes ◽  
Christiane Dahl ◽  
...  

Before its uptake and oxidation by purple sulfur bacteria, elemental sulfur probably first has to be mobilized. To obtain more insight into this mobilization process in the phototrophic purple sulfur bacterium Allochromatium vinosum, we used HPLC analysis and X-ray absorption near-edge structure (XANES) spectroscopy for the detection and identification of sulfur compounds in culture supernatants and bacterial cells. We intended to identify soluble sulfur compounds that specifically occur during growth on elemental sulfur, and therefore compared spectra of cultures grown on sulfur with those of cultures grown on sulfide or thiosulfate. While various unexpected oxidized organic sulfur species (sulfones, C–SO2–C, and sulfonates, ) were observed via XANES spectroscopy in the supernatants, we obtained evidence for the presence of monosulfane sulfonic acids inside the bacterial cells by HPLC analysis. The concentrations of the latter compounds showed a tight correlation with the content of intracellular sulfur, reaching their maximum when sulfur began to be oxidized. None of the detected sulfur compounds appeared to be a specific soluble intermediate or product of elemental sulfur mobilization. It therefore seems unlikely that mobilization of elemental sulfur by purple sulfur bacteria involves excretion of soluble sulfur-containing substances that would be able to act on substrate distant from the cells.


Author(s):  
Francesco Di Nezio ◽  
Clarisse Beney ◽  
Samuele Roman ◽  
Francesco Danza ◽  
Antoine Buetti-Dinh ◽  
...  

Abstract Meromictic lakes are interesting ecosystems to study anaerobic microorganisms due their permanent stratification allowing the formation of a stable anoxic environment. The crenogenic meromictic Lake Cadagno harbors an important community of anoxygenic phototrophic sulfur bacteria responsible for almost half of its total productivity. Besides their ability to fix CO2 through photosynthesis, these microorganisms also showed high rates of dark carbon fixation via chemosyntesis. Here, we grew in pure cultures three populations of anoxygenic phototrophic sulfur bacteria previously isolated from the lake, accounting for 72.8% of the total microbial community, and exibiting different phenotypes: 1) the motile, large-celled purple sulfur bacterium (PSB) Chromatium okenii, 2) the small-celled PSB Thiodictyon syntrophicum, and 3) the green sulfur bacterium (GSB) Chlorobium phaeobacteroides. We measured their ability to fix CO2 through photo- and chemo-synthesis, both in situ in the lake and in laboratory under different incubation conditions. We also evaluated the efficiency and velocity of H2S photo-oxidation, an important reaction in the anoxygenic photosynthesis process. Our results confirm that phototrophic sulfur bacteria strongly fix CO2 in the presence of light and that oxygen increases chemosynthesis at night, in laboratory conditions. Moreover, substancial differences were displayed between the three selected populations in terms of activity and abundance.


Sign in / Sign up

Export Citation Format

Share Document