Normal development and embryonic gene activity of the ascidian Herdmania momus

1996 ◽  
Vol 47 (3) ◽  
pp. 543 ◽  
Author(s):  
BM Degnan ◽  
PR Rohde ◽  
MF Lavin

Embryonic and post-larval development of the tropical solitary ascidian Herdmania momus is shown to be similar to that of extensively studied ascidian model systems. H. momus development is rapid and temperature-dependent, with hatching occurring 8.5 h after fertilization at 28�C. An increase in total embryonic gene transcription is detected at the 110-cell stage or the onset of gastrulation. Treatment of early embryos with actinomycin D inhibits transcription and curtails morphogenetic cell movement in the early gastrula without immediately inhibiting cell division. The prevalence of homeobox-containing transcripts increases around the 110-cell stage and later in development. Isolated H. momus homeobox genes, expressed at the tailbud stage, have greatest sequence identity to members of Hox, otd/Otx, eve/Evx and cad/Cdx homeobox classes. Evidence from H. momus and other ascidians suggests that urochordates possess most of the homeobox genes of the chordate HOX cluster.

2002 ◽  
Vol 22 (13) ◽  
pp. 4863-4875 ◽  
Author(s):  
Jennifer C. Moore ◽  
Jan L. Sumerel ◽  
Bradley J. Schnackenberg ◽  
Jason A. Nichols ◽  
Athula Wikramanayake ◽  
...  

ABSTRACT cdk4 mRNA and protein are constitutively expressed in sea urchin eggs and throughout embryonic development. In contrast, cyclin D mRNA is barely detectable in eggs and early embryos, when the cell cycles consist of alternating S and M phases. Cyclin D mRNA increases dramatically in embryos at the early blastula stage and remains at a constant level throughout embryogenesis. An increase in cdk4 kinase activity occurs concomitantly with the increase in cyclin D mRNA. Ectopic expression of cyclin D mRNA in eggs arrests development before the 16-cell stage and causes eventual embryonic death, suggesting that activation of cyclin D/cdk4 in cleavage cell cycles is lethal to the embryo. In contrast, blocking cyclin D or cdk4 expression with morpholino antisense oligonucleotides results in normal development of early gastrula-stage embryos but abnormal, asymmetric larvae. These results suggest that in sea urchins, cyclin D and cdk4 are required for normal development and perhaps the patterning of the developing embryo, but may not be directly involved in regulating entry into the cell cycle.


Development ◽  
1983 ◽  
Vol 74 (1) ◽  
pp. 221-234
Author(s):  
H. Kageura ◽  
K. Yamana

Xenopus embryos at the 2-cell stage were cut into right and left halves, those at the 4-cell stage into dorsal and ventral halves or individual blastomeres, and those at the 8-cell stage into lateral, animal and vegetal halves. Defect embryos, that is, 8-cell embryos from which a particular pair of blastomeres had been removed, were also prepared. These halves, blastomeres and defect embryos were cultured in 50% Leibovitz (L-15) medium supplemented with 10% foetal calf serum and then in 10% Steinberg solution. Their development was determined from their macroscopic appearance when controls reached stage 26 (early tailbud stage) or later. The only halves that could develop into normal larvae or frogs were lateral ones of 2- and 8-cell embryos. An interesting finding was that these halves of 2-cell embryos developed into only half-embryos when cultured in the above Leibovitz medium beyond the beginning of gastrulation. On the other hand, most or all the dorsal and ventral halves at the 4-cell stage and the animal and vegetal quartets at the 8-cell stage did not form normally proportioned embryos. Defect embryos lacking any two blastomeres of the animal half gave rise to nearly normal embryos, whereas those lacking two dorsal or two ventral blastomeres of the vegetal half did not. From the present results and those of studies now in progress, it is concluded that development of blastomeres and halves from these early embryos, except lateral halves from 2- and 8-cell embryos, is not regulative as expected earlier, and that a certain combination of blastomeres is essential for complete pattern regulation.


Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S84-S84
Author(s):  
Yasuyuki Kamata ◽  
Kazuyuki Endo ◽  
Hiroyuki Nozaki ◽  
Akiko Fujiwara ◽  
Ikuo Yasumasu

It is well known that sea urchin embryos treated with lithium chloride (LiC1) develop to abnormally into vegetalised embryos, in which differentiation of ectodermal cells is inhibited. When embryos of the sea urchins, Hemicentrotus pulcherrimus and Anthocidaris crassispina were treated with 20 mM LiC1 from the 8-cell stage to the corresponding early gastrula stage, they developed to vegetalised embryos with a large exogut 45 h after fertilisation. In these vegetalised embryos, high activity of alkaline phosphatase (AP) was detected histochemically at the end of the exogut where it is attached to the embryo body. High activity of AP is known to be detected specifically in the gut of sea urchin pluteus larvae by the same procedure as used in this study. Hence, we concluded that this part of the exogut is composed of the cells which develop into the cells of the gut in normal development.When exogut isolated from vegetalised embryos was cultured in the extract obtained from eggs or embryos, the end composed of the cells in which high AP activity was detected, expanded during culture and formed a large spherical structure about 24 h after the initiation of culture. The minimum concentration of extract to cause expansion of isolated exogut was 5 × 103 egg or embryo equivalent/ml ASW (artificial seawater). The extract boiled at 95 °C for 1 h also caused expansion of isolated exogut at the same concentrations as non-boiled extract. On the other hand, the extract obtained from eggs or embryos by chloroform–methanol extraction did not cause any expansion of exogut, but the aqueous phase, heat-dried and dissolved in ASW, induced expansion of isolated exogut.


Author(s):  
Ane Iturbide ◽  
Mayra L. Ruiz Tejeda Segura ◽  
Camille Noll ◽  
Kenji Schorpp ◽  
Ina Rothenaigner ◽  
...  

AbstractTotipotent cells hold enormous potential for regenerative medicine. Thus, the development of cellular models recapitulating totipotent-like features is of paramount importance. Cells resembling the totipotent cells of early embryos arise spontaneously in mouse embryonic stem (ES) cell cultures. Such ‘2-cell-like-cells’ (2CLCs) recapitulate 2-cell-stage features and display expanded cell potential. Here, we used 2CLCs to perform a small-molecule screen to identify new pathways regulating the 2-cell-stage program. We identified retinoids as robust inducers of 2CLCs and the retinoic acid (RA)-signaling pathway as a key component of the regulatory circuitry of totipotent cells in embryos. Using single-cell RNA-seq, we reveal the transcriptional dynamics of 2CLC reprogramming and show that ES cells undergo distinct cellular trajectories in response to RA. Importantly, endogenous RA activity in early embryos is essential for zygotic genome activation and developmental progression. Overall, our data shed light on the gene regulatory networks controlling cellular plasticity and the totipotency program.


Development ◽  
1999 ◽  
Vol 126 (8) ◽  
pp. 1611-1620 ◽  
Author(s):  
C.W. Beck ◽  
J.M. Slack

We have developed a new assay to identify factors promoting formation and outgrowth of the tail bud. A piece of animal cap filled with the test mRNAs is grafted into the posterior region of the neural plate of a host embryo. With this assay we show that expression of a constitutively active Notch (Notch ICD) in the posterior neural plate is sufficient to produce an ectopic tail consisting of neural tube and fin. The ectopic tails express the evenskipped homologue Xhox3, a marker for the distal tail tip. Xhox3 will also induce formation of an ectopic tail in our assay. We show that an antimorphic version of Xhox3, Xhox3VP16, will prevent tail formation by Notch ICD, showing that Xhox3 is downstream of Notch signalling. An inducible version of this reagent, Xhox3VP16GR, specifically blocks tail formation when induced in tailbud stage embryos, comfirming the importance of Xhox3 for tail bud outgrowth in normal development. Grafts containing Notch ICD will only form tails if placed in the posterior part of the neural plate. However, if Xwnt3a is also present in the grafts they can form tails at any anteroposterior level. Since Xwnt3a expression is localised appropriately in the posterior at the time of tail bud formation it is likely to be responsible for restricting tail forming competence to the posterior neural plate in our assay. Combined expression of Xwnt3a and active Notch in animal cap explants is sufficient to induce Xhox3, provoke elongation and form neural tubes. Conservation of gene expression in the tail bud of other vertebrates suggests that this pathway may describe a general mechanism controlling tail outgrowth and secondary neurulation.


Development ◽  
1983 ◽  
Vol 75 (1) ◽  
pp. 67-86
Author(s):  
T. A. Dettlaff

In both the ectodermal and the chordamesodermal regions of Anuran embryos, the outer layer of cells possesses epithelial properties and has the same restricted morphogenetic potencies. It is thus interchangeable between the regions, capable of epiboly and, when underlain by notochord material, of the formation of bottle-shaped cells as at the blastoporal groove, and invagination. When taken from the chordamesoderm region, this outer layer has no inducing effect on the ectoderm of the early gastrula. In normal development the outer layer of the neural plate takes an active part in forming the neural tube cavity. It gives rise to the neuroepithelial roof of the diencephalon and medulla oblongata and, when underlain by neuroblasts that develop from the inner cell layers, to ependymal cells of the brain wall. The outer layer of the notochord material is included in the epithelial layer underlying the roof of the gastrocoel - the hypochordal plate. The inner layers of these regions consist of loosely arranged cells and normally have no epithelial properties although, when taken from the ectoderm region, they may acquire such properties upon long-term contact with the environment. However they have wide morphogenetic potencies; the differences in these potencies between cells taken from the various presumptive regions being less than the differences between outer and inner cell layers in each region. Maps are provided which show the arrangement of presumptive rudiments in the ectoderm and chordamesoderm on sagittal sections through Bombina bombina embryos in early and late gastrulation.


Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 55-63 ◽  
Author(s):  
F. Serras ◽  
C. Baud ◽  
M. Moreau ◽  
P. Guerrier ◽  
J.A.M. Van den Biggelaar

We have studied the intercellular communication pathways in early embryos of the ascidian Ciona intestinalis. In two different series of experiments, we injected iontophoretically the dyes Lucifer Yellow and Fluorescein Complexon, and we analysed the spread of fluorescence to the neighbouring cells. We found that before the 32-cell stage no dye spread occurs between nonsister cells, whereas sister cells are dye-coupled, possibly via cytoplasmic bridges. After the 32-cell stage, dye spread occurs throughout the embryo. However, electrophysiological experiments showed that nonsister cells are ionically coupled before the 32-cell stage. We also found that at the 4-cell stage junctional conductance between nonsister cells is voltage dependent, which suggests that conductance is mediated by gap junctions in a way similar to that observed in other embryos.


Development ◽  
1987 ◽  
Vol 100 (2) ◽  
pp. 279-295 ◽  
Author(s):  
L. Dale ◽  
J.M. Slack

We have further analysed the roles of mesoderm induction and dorsalization in the formation of a regionally specified mesoderm in early embryos of Xenopus laevis. First, we have examined the regional specificity of mesoderm induction by isolating single blastomeres from the vegetalmost tier of the 32-cell embryo and combining each with a lineage-labelled (FDA) animal blastomere tier. Whereas dorsovegetal (D1) blastomeres induce ‘dorsal-type’ mesoderm (notochord and muscle), laterovegetal and ventrovegetal blastomeres (D2–4) induce either ‘intermediate-type’ (muscle, mesothelium, mesenchyme and blood) or ‘ventral-type’ (mesothelium, mesenchyme and blood) mesoderm. No significant difference in inductive specificity between blastomeres D2, 3 and 4 could be detected. We also show that laterovegetal and ventrovegetal blastomeres from early cleavage stages can have a dorsal inductive potency partially activated by operative procedures, resulting in the induction of intermediate-type mesoderm. Second, we have determined the state of specification of ventral blastomeres by isolating and culturing them in vitro between the 4-cell stage and the early gastrula stage. The majority of isolates from the ventral half of the embryo gave extreme ventral types of differentiation at all stages tested. Although a minority of cases formed intermediate-type and dorsal-type mesoderms we believe these to result from either errors in our assessment of the prospective DV axis or from an enhancement, provoked by microsurgery, of some dorsal inductive specificity. The results of induction and isolation experiments suggest that only two states of specification exist in the mesoderm of the pregastrula embryo, a dorsal type and a ventral type. Finally we have made a comprehensive series of combinations between different regions of the marginal zone using FDA to distinguish the components. We show that, in combination with dorsal-type mesoderm, ventral-type mesoderm becomes dorsalized to the level of intermediate-type mesoderm. Dorsal-type mesoderm is not ventralized in these combinations. Dorsalizing activity is confined to a restricted sector of the dorsal marginal zone, it is wider than the prospective notochord and seems to be graded from a high point at the dorsal midline. The results of these experiments strengthen the case for the three-signal model proposed previously, i.e. dorsal and ventral mesoderm inductions followed by dorsalization, as the simplest explanation capable of accounting for regional specification within the mesoderm of early Xenopus embryos.


Development ◽  
1994 ◽  
Vol 120 (9) ◽  
pp. 2619-2628 ◽  
Author(s):  
R. Kuraishi ◽  
L. Osanai

Contribution of maternal cytoplasmic factors and cellular interaction to determination of archenteron in a starfish embryo was analyzed by (1) examining temporal and positional pattern of expression of an endoderm-specific enzyme, alkaline phosphatase, (2) deleting the vegetal polar fragment from an immature oocyte and (3) changing the orientation of a blastomere within an early stage embryo. The archenteron (and the differentiated digestive tract) of Asterina pectinifera was divided into three areas based on the time of start of alkaline phosphatase expression. At 27 hours after 1-methyladenine treatment, the whole archenteron except the anterior end started to express alkaline phosphatase. The anterior negative area differentiated into mesodermal tissues such as mesenchyme cells and anterior coelomic pouches (anterior mesodermal area). The alkaline-phosphatase-positive area 1 gave rise to the esophagus and the anterior end of the stomach. Alkaline-phosphatase-positive area 2, which was gradually added to the posterior end of the archenteron after 30 hours, became alkaline-phosphatase- positive and formed the middle-to-posterior part of the stomach and the intestine. When the vegetal oocyte fragment, the volume of which was more than 8% of that of the whole oocyte, was removed from the immature oocyte, archenteron formation was strongly suppressed. However, when the volume deleted was less than 6%, most of the larvae started archenteron formation before the intact controls reached the mesenchyme-migration stage (30 hours). Although cells in the alkaline-phosphatase-positive area 2 are added to the posterior end of the archenteron after 30 hours in normal development (R. Kuraishi and K. Osanai (1992) Biol. Bull. Mar. Biol. Lab., Woods Hole 183, 258–268), few larvae started gastrulation after 30 hours. Estimation of the movement of the oocyte cortex during the early development suggested that the area that inherits the cortex of the 7% area coincides with the combined area of anterior mesodermal area and alkaline-phosphatase-positive area 1. When one of the blastomeres was rotated 180° around the axis of apicobasal polarity at the 2-cell stage to make its vegetal pole face the animal pole of the other blastomere, two archentera formed at the separated vegetal poles. Intracellular injection of tracers showed that cells derived from the animal blastomere, which gives rise to the ectoderm in normal development, stayed in the outer layer until 30 hours; a proportion of them then entered the archenteron gradually. The involuted animal cells expressed alkaline phosphatase and were incorporated into the middle-to-posterior part of the stomach and the intestine. These results suggest that anterior mesodermal area and alkaline-phosphatase-positive area 1 are determined by cytoplasmic factor(s) that had already been localized in their presumptive areas. In contrast, alkaline-phosphatase-positive area 2 becomes the endoderm by homoiogenetic induction from the neighboring area on the vegetal side, namely alkaline-phosphatase-positive area 1.


Reproduction ◽  
2016 ◽  
Vol 151 (1) ◽  
pp. 1-7 ◽  
Author(s):  
C de Frutos ◽  
A P López-Cardona ◽  
N Fonseca Balvís ◽  
R Laguna-Barraza ◽  
D Rizos ◽  
...  

Offspring telomere length (TL) has been correlated with paternal TL, but the mechanism for this parent of origin-specific inheritance remains unclear. The objective of this study has been to determine the role of spermatozoa TL in embryonic telomere lengthening by using two mouse models showing dimorphism in their spermatozoa TL: Mus musculus vs Mus spretus and old vs young Mus musculus. Mus spretus spermatozoa displayed a shorter TL than Mus musculus. Hybrid offspring exhibited lower TL compared with Mus musculus starting at the two-cell stage, before the onset of telomerase expression. To analyze the role of spermatozoa telomeres in early telomere lengthening, we compared the TL in oocytes, zygotes, two-cell embryos and blastocysts produced by parthenogenesis or by fertilization with Mus musculus or Mus spretus spermatozoa. TL was significantly higher in spermatozoa compared with oocytes, and it increased significantly from the oocyte to the zygote stage in those embryos fertilized with Mus musculus spermatozoa, but not in those fertilized with Mus spretus spermatozoa or produced by parthenogenesis. A further increase was noted from the zygote to the two-cell stage in fertilized Mus musculus embryos, whereas hybrid embryos maintained the oocyte TL. Spermatozoa TL shortened with age in Mus musculus and the offspring from young males showed a significantly higher TL compared with that fathered by old males. These significant differences were already noticeable at the two-cell stage. These results suggest that spermatozoa telomeres act as a guide for telomerase-independent telomere lengthening resulting in differences in TL that persist after birth.Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/151/1/1/suppl/DC1.


Sign in / Sign up

Export Citation Format

Share Document