Intercellular communication in the early embryo of the ascidian Ciona intestinalis

Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 55-63 ◽  
Author(s):  
F. Serras ◽  
C. Baud ◽  
M. Moreau ◽  
P. Guerrier ◽  
J.A.M. Van den Biggelaar

We have studied the intercellular communication pathways in early embryos of the ascidian Ciona intestinalis. In two different series of experiments, we injected iontophoretically the dyes Lucifer Yellow and Fluorescein Complexon, and we analysed the spread of fluorescence to the neighbouring cells. We found that before the 32-cell stage no dye spread occurs between nonsister cells, whereas sister cells are dye-coupled, possibly via cytoplasmic bridges. After the 32-cell stage, dye spread occurs throughout the embryo. However, electrophysiological experiments showed that nonsister cells are ionically coupled before the 32-cell stage. We also found that at the 4-cell stage junctional conductance between nonsister cells is voltage dependent, which suggests that conductance is mediated by gap junctions in a way similar to that observed in other embryos.

Reproduction ◽  
2019 ◽  
Vol 158 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Meriem Hamdi ◽  
María J Sánchez-Calabuig ◽  
Beatriz Rodríguez-Alonso ◽  
Sandra Bagés Arnal ◽  
Kalliopi Roussi ◽  
...  

During its journey through the oviduct, the bovine embryo may induce transcriptomic and metabolic responses, via direct or indirect contact, from bovine oviduct epithelial cells (BOECs). An in vitro model using polyester mesh was established, allowing the study of the local contact during 48 h between a BOEC monolayer and early embryos (2- or 8-cell stage) or their respective conditioned media (CM). The transcriptomic response of BOEC to early embryos was assessed by analyzing the transcript abundance of SMAD6, TDGF1, ROCK1, ROCK2, SOCS3, PRELP and AGR3 selected from previous in vivo studies and GPX4, NFE2L2, SCN9A, EPSTI1 and IGFBP3 selected from in vitro studies. Moreover, metabolic analyses were performed on the media obtained from the co-culture. Results revealed that presence of early embryos or their CM altered the BOEC expression of NFE2L2, GPX4, SMAD6, IGFBP3, ROCK2 and SCN9A. However, the response of BOEC to two-cell embryos or their CM was different from that observed to eight-cell embryos or their CM. Analysis of energy substrates and amino acids revealed that BOEC metabolism was not affected by the presence of early embryos or by their CM. Interestingly, embryo metabolism before embryo genome activation (EGA) seems to be independent of exogenous sources of energy. In conclusion, this study confirms that early embryos affect BOEC transcriptome and BOEC response was embryo stage specific. Moreover, embryo affects BOEC via a direct contact or via its secretions. However transcriptomic response of BOEC to the embryo did not manifest as an observable metabolic response.


Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 371-381
Author(s):  
D.L. Paul ◽  
K. Yu ◽  
R. Bruzzone ◽  
R.L. Gimlich ◽  
D.A. Goodenough

A chimeric construct, termed 3243H7, composed of fused portions of the rat gap junction proteins connexin32 (Cx32) and connexin43 (Cx43) has been shown to have selective dominant inhibitory activity when tested in the Xenopus oocyte pair system. Co-injection of mRNA coding for 3243H7 together with mRNAs coding for Cx32 or Cx43 completely blocked the development of channel conductances, while the construct was ineffective at blocking intercellular channel assembly when coinjected with rat connexin37 (Cx37). Injection of 3243H7 into the right anterodorsal blastomere of 8-cell-stage Xenopus embryos resulted in disadhesion and delamination of the resultant clone of cells evident by embryonic stage 8; a substantial number, although not all, of the progeny of the injected cell were eliminated from the embryo by stage 12. A second construct, 3243H8, differing from 3243H7 in the relative position of the middle splice, had no dominant negative activity in the oocyte pair assay, nor any detectable effects on Xenopus development, even when injected at four-fold higher concentrations. The 3243H7-induced embryonic defects could be rescued by coinjection of Cx37 with 3243H7. A blastomere reaggregation assay was used to demonstrate that a depression of dye-transfer could be detected in 3243H7-injected cells as early as stage 7; Lucifer yellow injections into single cells also demonstrated that injection of 3243H7 resulted in a block of intercellular communication. These experiments indicate that maintenance of embryonic cell adhesion with concomitant positional information requires gap junction-mediated intercellular communication.


Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 153-160 ◽  
Author(s):  
B. Dale ◽  
L. Santella ◽  
E. Tosti

Using the whole-cell voltage clamp technique, we have studied junctional conductance (Gj), and Lucifer Yellow (LY) coupling in 2-cell and 32-cell ascidian embryos. Gj ranges from 17.5 to 35.3 nS in the 2-cell embryo where there is no passage of LY, and from 3.5 to 12.2 nS in the later embryo where LY dye spread is extensive. In both cases, Gj is independent of the transjunctional potential (Vj). Manually apposed 2-cell or 32-cell embryos established a junctional conductance of up to 10 nS within 30 min of contact. Furthermore, since we did not observe any significant number of cytoplasmic bridges at the EM and Gj is sensitive to octanol, it is probable that blastomeres in the 2-cell and 32-cell embryos are in communication by gap junctions. In order to compare Gj in the two stages and to circumvent problems of cell size, movement and spatial location, we used cytochalasin B to arrest cleavage. Gj in cleavage-arrested 2-cell embryos ranged from 25.0 to 38.0 nS and remained constant over a period of 2.5 h. LY injected into a blastomere of these arrested embryos did not spread to the neighbour cell until they attained the developmental age of a 32- to 64-cell control embryo. Our experiments indicate a change in selectivity of gap junctions at the 32-cell stage that is not reflected by a macroscopic change in ionic permeability.


1997 ◽  
Vol 110 (4) ◽  
pp. 477-487 ◽  
Author(s):  
H.J. Clarke ◽  
M. Bustin ◽  
C. Oblin

We examined the distribution of the somatic subtypes of histone H1 and the variant subtype, H1(0), and their encoding mRNAs during oogenesis and early embryogenesis in the mouse. As detected using immunocytochemistry, somatic H1 was present in the nuclei of oocytes of 18-day embryos. Following birth, however, somatic H1 became less abundant in both growing and non-growing oocytes, beginning as early as 4 days of age in the growing oocytes, and was scarcely detectable by 19 days. Together with previous results, this defines a period of time when somatic H1 is depleted in oocytes, namely, from shortly after birth when the oocytes are at prophase I until the 4-cell stage following fertilization. At the stages when somatic H1 was undetectable, oocyte nuclei could be stained using an antibody raised against histone H1(0), which suggests that this may be a major linker histone in these cells. In contrast to the post-natal loss of somatic H1 protein, mRNAs encoding four (H1a, H1b, H1d, H1e) of the five somatic subtypes were present, as detected using RT-PCR in growing oocytes of 9-day pups, and all five subtypes including H1c were present in fully grown oocytes of adults. All five subtypes were also present in embryos, both before and after activation of the embryonic genome. mRNA encoding H1(0) was also detected in oocytes and early embryos. Whole-mount in situ hybridization using cloned H1c and H1e cDNAs revealed that the mRNAs were present in the cytoplasm of oocytes and 1-cell embryos, in contrast to the sea urchin early embryo where they are sequestered in the cell nucleus. We suggest that, as in many somatic cell types, the chromatin of mouse oocytes becomes depleted of somatic H1 and relatively enriched in histone H1(0) postnatally, and that somatic H1 is reassembled onto chromatin in cleavage-stage embryos. The post-natal loss of somatic H1 appears to be regulated post-transcriptionally by a mechanism not involving nuclear localization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhi-Qiang Du ◽  
Hao Liang ◽  
Xiao-Man Liu ◽  
Yun-Hua Liu ◽  
Chonglong Wang ◽  
...  

AbstractSuccessful early embryo development requires the correct reprogramming and configuration of gene networks by the timely and faithful execution of zygotic genome activation (ZGA). However, the regulatory principle of molecular elements and circuits fundamental to embryo development remains largely obscure. Here, we profiled the transcriptomes of single zygotes and blastomeres, obtained from in vitro fertilized (IVF) or parthenogenetically activated (PA) porcine early embryos (1- to 8-cell), focusing on the gene expression dynamics and regulatory networks associated with maternal-to-zygote transition (MZT) (mainly maternal RNA clearance and ZGA). We found that minor and major ZGAs occur at 1-cell and 4-cell stages for both IVF and PA embryos, respectively. Maternal RNAs gradually decay from 1- to 8-cell embryos. Top abundantly expressed genes (CDV3, PCNA, CDR1, YWHAE, DNMT1, IGF2BP3, ARMC1, BTG4, UHRF2 and gametocyte-specific factor 1-like) in both IVF and PA early embryos identified are of vital roles for embryo development. Differentially expressed genes within IVF groups are different from that within PA groups, indicating bi-parental and maternal-only embryos have specific sets of mRNAs distinctly decayed and activated. Pathways enriched from DEGs showed that RNA associated pathways (RNA binding, processing, transport and degradation) could be important. Moreover, mitochondrial RNAs are found to be actively transcribed, showing dynamic expression patterns, and for DNA/H3K4 methylation and transcription factors as well. Taken together, our findings provide an important resource to investigate further the epigenetic and genome regulation of MZT events in early embryos of pigs.


2021 ◽  
Author(s):  
Zhen Sun ◽  
Hua Yu ◽  
Jing Zhao ◽  
Tianyu Tan ◽  
Hongru Pan ◽  
...  

AbstractLIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28’s role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.


Author(s):  
Ane Iturbide ◽  
Mayra L. Ruiz Tejeda Segura ◽  
Camille Noll ◽  
Kenji Schorpp ◽  
Ina Rothenaigner ◽  
...  

AbstractTotipotent cells hold enormous potential for regenerative medicine. Thus, the development of cellular models recapitulating totipotent-like features is of paramount importance. Cells resembling the totipotent cells of early embryos arise spontaneously in mouse embryonic stem (ES) cell cultures. Such ‘2-cell-like-cells’ (2CLCs) recapitulate 2-cell-stage features and display expanded cell potential. Here, we used 2CLCs to perform a small-molecule screen to identify new pathways regulating the 2-cell-stage program. We identified retinoids as robust inducers of 2CLCs and the retinoic acid (RA)-signaling pathway as a key component of the regulatory circuitry of totipotent cells in embryos. Using single-cell RNA-seq, we reveal the transcriptional dynamics of 2CLC reprogramming and show that ES cells undergo distinct cellular trajectories in response to RA. Importantly, endogenous RA activity in early embryos is essential for zygotic genome activation and developmental progression. Overall, our data shed light on the gene regulatory networks controlling cellular plasticity and the totipotency program.


2005 ◽  
Vol 22 (1) ◽  
pp. 55-63 ◽  
Author(s):  
SHIH-FANG FAN ◽  
STEPHEN YAZULLA

Cannabinoid CB1receptor (viaGs) and dopamine D2receptor (viaGi/o) antagonistically modulate goldfish cone membrane currents. As ON bipolar cells have CB1and D1receptors, but not D2receptors, we focused on whether CB1receptor agonist and dopamine interact to modulate voltage-dependent outward membrane K+currentsIK(V)of the ON mixed rod/cone (Mb) bipolar cells. Whole-cell currents were recorded from Mb bipolar cells in goldfish retinal slices. Mb bipolar cells were identified by intracellular filling with Lucifer yellow. The bath solution was calcium-free and contained 1 mM cobalt to block indirect calcium-dependent effects. Dopamine (10 μM) consistently increasedIK(V)by a factor of 1.57 ± 0.12 (S.E.M.,n= 15). A CB receptor agonist, WIN 55212-2 (0.25–1 μM), had no effect, but 4 μM WIN 55212-2 suppressedIK(V)by 60%. IfIK(V)was first increased by 10 μM dopamine, application of WIN 55212-2 (0.25–1 μM) reversibly blocked the effect of dopamine even though these concentrations of WIN 55212-2 had no effect of their own. If WIN 55212-2 was applied first and dopamine (10 μM) was added to the WIN-containing solution, 0.1 μM WIN 55212-2 blocked the effect of dopamine. All effects of WIN 55212-2 were blocked by coapplication of SR 141716A (CB1antagonist) and pretreatment with pertussis toxin (blocker of Gi/o) indicating actionviaCB1receptor activation of G protein Gi/o. Coactivation of CB1and D1receptors on Mb bipolar cells produces reciprocal effects onIK(V). The CB1-evoked suppression ofIK(V)is mediated by G protein Gi/o, whereas the D1-evoked enhancement is mediated by G protein Gs. As dopamine is a retinal “light” signal, these data support our notion that endocannabinoids function as a “dark” signal, interacting with dopamine to set retinal sensitivity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
U. A. Nekliudova ◽  
T. F. Schwaha ◽  
O. N. Kotenko ◽  
D. Gruber ◽  
N. Cyran ◽  
...  

Abstract Background Placentation has evolved multiple times among both chordates and invertebrates. Although they are structurally less complex, invertebrate placentae are much more diverse in their origin, development and position. Aquatic colonial suspension-feeders from the phylum Bryozoa acquired placental analogues multiple times, representing an outstanding example of their structural diversity and evolution. Among them, the clade Cyclostomata is the only one in which placentation is associated with viviparity and polyembryony—a unique combination not present in any other invertebrate group. Results The histological and ultrastructural study of the sexual polymorphic zooids (gonozooids) in two cyclostome species, Crisia eburnea and Crisiella producta, revealed embryos embedded in a placental analogue (nutritive tissue) with a unique structure—comprising coenocytes and solitary cells—previously unknown in animals. Coenocytes originate via nuclear multiplication and cytoplasmic growth among the cells surrounding the early embryo. This process also affects cells of the membranous sac, which initially serves as a hydrostatic system but later becomes main part of the placenta. The nutritive tissue is both highly dynamic, permanently rearranging its structure, and highly integrated with its coenocytic ‘elements’ being interconnected via cytoplasmic bridges and various cell contacts. This tissue shows evidence of both nutrient synthesis and transport (bidirectional transcytosis), supporting the enclosed multiple progeny. Growing primary embryo produces secondary embryos (via fission) that develop into larvae; both the secondary embyos and larvae show signs of endocytosis. Interzooidal communication pores are occupied by 1‒2 specialized pore-cells probably involved in the transport of nutrients between zooids. Conclusions Cyclostome nutritive tissue is currently the only known example of a coenocytic placental analogue, although syncytial ‘elements’ could potentially be formed in them too. Structurally and functionally (but not developmentally) the nutritive tissue can be compared with the syncytial placental analogues of certain invertebrates and chordates. Evolution of the cyclostome placenta, involving transformation of the hydrostatic apparatus (membranous sac) and change of its function to embryonic nourishment, is an example of exaptation that is rather widespread among matrotrophic bryozoans. We speculate that the acquisition of a highly advanced placenta providing massive nourishment might support the evolution of polyembryony in cyclostomes. In turn, massive and continuous embryonic production led to the evolution of enlarged incubating polymorphic gonozooids hosting multiple progeny.


1981 ◽  
Vol 77 (1) ◽  
pp. 77-93 ◽  
Author(s):  
D C Spray ◽  
A L Harris ◽  
M V Bennett

The conductance of junctions between amphibian blastomeres is strongly voltage dependent. Isolated pairs of blastomeres from embryos of Ambystoma mexicanum, Xenopus laevis, and Rana pipiens were voltage clamped, and junctional current was measured during transjunctional voltage steps. The steady-state junctional conductance decreases as a steep function of transjunctional voltage of either polarity. A voltage-insensitive conductance less than 5% of the maximum remains at large transjunctional voltages. Equal transjunctional voltages of opposite polarities produce equal conductance changes. The conductance is half maximal at a transjunctional voltage of approximately 15 mV. The junctional conductance is insensitive to the potential between the inside and outside of the cells. The changes in steady-state junctional conductance may be accurately modeled for voltages of each polarity as arising from a reversible two-state system in which voltage linearly affects the energy difference between states. The voltage sensitivity can be accounted for by the movement of about six electron charges through the transjunctional voltage. The changes in junctional conductance are not consistent with a current-controlled or ionic accumulation mechanism. We propose that the intramembrane particles that comprise gap junctions in early amphibian embryos are voltage-sensitive channels.


Sign in / Sign up

Export Citation Format

Share Document