Morphogenesis of exogut isolated from vegetalised embryo of sea urchin

Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S84-S84
Author(s):  
Yasuyuki Kamata ◽  
Kazuyuki Endo ◽  
Hiroyuki Nozaki ◽  
Akiko Fujiwara ◽  
Ikuo Yasumasu

It is well known that sea urchin embryos treated with lithium chloride (LiC1) develop to abnormally into vegetalised embryos, in which differentiation of ectodermal cells is inhibited. When embryos of the sea urchins, Hemicentrotus pulcherrimus and Anthocidaris crassispina were treated with 20 mM LiC1 from the 8-cell stage to the corresponding early gastrula stage, they developed to vegetalised embryos with a large exogut 45 h after fertilisation. In these vegetalised embryos, high activity of alkaline phosphatase (AP) was detected histochemically at the end of the exogut where it is attached to the embryo body. High activity of AP is known to be detected specifically in the gut of sea urchin pluteus larvae by the same procedure as used in this study. Hence, we concluded that this part of the exogut is composed of the cells which develop into the cells of the gut in normal development.When exogut isolated from vegetalised embryos was cultured in the extract obtained from eggs or embryos, the end composed of the cells in which high AP activity was detected, expanded during culture and formed a large spherical structure about 24 h after the initiation of culture. The minimum concentration of extract to cause expansion of isolated exogut was 5 × 103 egg or embryo equivalent/ml ASW (artificial seawater). The extract boiled at 95 °C for 1 h also caused expansion of isolated exogut at the same concentrations as non-boiled extract. On the other hand, the extract obtained from eggs or embryos by chloroform–methanol extraction did not cause any expansion of exogut, but the aqueous phase, heat-dried and dissolved in ASW, induced expansion of isolated exogut.

2002 ◽  
Vol 22 (13) ◽  
pp. 4863-4875 ◽  
Author(s):  
Jennifer C. Moore ◽  
Jan L. Sumerel ◽  
Bradley J. Schnackenberg ◽  
Jason A. Nichols ◽  
Athula Wikramanayake ◽  
...  

ABSTRACT cdk4 mRNA and protein are constitutively expressed in sea urchin eggs and throughout embryonic development. In contrast, cyclin D mRNA is barely detectable in eggs and early embryos, when the cell cycles consist of alternating S and M phases. Cyclin D mRNA increases dramatically in embryos at the early blastula stage and remains at a constant level throughout embryogenesis. An increase in cdk4 kinase activity occurs concomitantly with the increase in cyclin D mRNA. Ectopic expression of cyclin D mRNA in eggs arrests development before the 16-cell stage and causes eventual embryonic death, suggesting that activation of cyclin D/cdk4 in cleavage cell cycles is lethal to the embryo. In contrast, blocking cyclin D or cdk4 expression with morpholino antisense oligonucleotides results in normal development of early gastrula-stage embryos but abnormal, asymmetric larvae. These results suggest that in sea urchins, cyclin D and cdk4 are required for normal development and perhaps the patterning of the developing embryo, but may not be directly involved in regulating entry into the cell cycle.


Development ◽  
1991 ◽  
Vol 112 (3) ◽  
pp. 881-890 ◽  
Author(s):  
O. Khaner ◽  
F. Wilt

It has been known from results obtained in the classical experiments on sea urchin embryos that cell isolation and transplantation showed extensive interactions between the early blastomeres and/or their descendants. In the experiments reported here a systematic reexamination of recombination of mesomeres and their progeny (which come from the animal hemisphere) with various vegetal cells derived from blastomeres of the 32- and 64-cell stage was carried out. Cells were marked with lineage tracers to follow which cell gave rise to what structures, and newly available molecular markers have been used to analyze different structures characteristic of regional differentiation. Large micromeres form spicules and induce gut and pigment cells in mesomeres, conforming to previous results. Small micromeres, a cell type not heretofore examined, gave rise to no recognizable structure and had very limited ability to evoke poorly differentiated gut tissue in mesomeres. Macromeres and their descendants, Veg 1 and Veg 2, form primarily what their normal fate dictated, though both did have some capacity to form spicules, presumably by formation from secondary mesenchyme. Macromeres and their descendants were not potent inducers of vegetal structures in animal cells, but they suppress the latent ability of mesomeres to form vegetal structures. The results lead us to propose that the significant interactions during normal development may be principally suppressive effects of mesomeres on one another and of adjacent vegetal cells on mesomeres.


1958 ◽  
Vol 4 (5) ◽  
pp. 615-620 ◽  
Author(s):  
Naoko Kawamura ◽  
Katsuma Dan

In the eggs of four species of echinoderms, Mespilia globulus, Pseudocentrotus depressus, Hemicentrotus pulcherrimus and Clypeaster japonicus, changes in the distribution of protein-bound SH groups from fertilization to the 2 cell stage have been studied cytochemically by use of a mercaptide-forming azo dye. In the eggs of these species, the color intensity in the cytoplasm increased upon fertilization. The astral centers and spindle during mitosis were stained deeply. When the aster formation was suppressed by ether, hyaline spots appeared in the egg cytoplasm instead of well formed astral centers and these spots were stained by the SH-specific dye. Upon recovery of such eggs in pure sea water, and when cleavage ensued, such spots disappeared and two new astral centers were reorganized. The SH-protein occurring in the centrosphere is considered to be the precursor material for the asters and spindle, and this material is apparently derived from the cytoplasm.


Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S81-S81
Author(s):  
Yasuhiro Ishizuka ◽  
Shonan Amemiya

Micromere signalling is a key to understanding the developmental mechanisms underlying endomesoderm differentiation along the A-V axis in sea urchin embryos. A recent study has shown that micromere activity in inducing endo-mesoderm differentiation of mesomere descendants is, unexpectedly, maximal at the hatching blastula (HB) stage in the echinoids Scaphechinus mirabilis and Hemicentrotus pulcherrimus. This study focused mainly on the timing of emission of the inductive signal by the micromere descendants. The timing of animal cap competent to react to the inductive signal from micromeres was not specifically investigated.In the present study, we examined the competence of mesomere descendants at the HB stage to react to the inductive signal of micromere descendants by producing recombinant embryos of the descendants of mesomeres and micromeres.Adults of the sand dollar Scaphechinus mirabilis and the sea urchin Hemicentrotus pulcherrimus were collected along the shore of Shiraishi Island, Okayama Prefecture and in the vicinity of the Misaki Marine Biological Station, Kanagawa Prefecture, respectively. The fertilised eggs were separated into two groups immediately after removal of the fertilisation membranes. One group was cultured in normal artificial seawater (ASW), and the other in ASW containing 50 mg/ml of rhodamine B isothiocyanate (RITC). At the early 16-cell stage unlabelled embryos were transferred to calcium-free seawater (CFSW) and dissected in the equatorial plane with a glass needle to isolate animal caps consisting of eight mesomeres. Embryos labeled with RITC were also transferred to CFSW at the same stage and dissected to isolate four micromeres. An isolated animal cap and a quartet of micromeres were cultured separately in ASW and recombined at the stage corresponding to the HB of control (undisturbed) embryos.


2010 ◽  
Vol 27 (6) ◽  
pp. 477-486 ◽  
Author(s):  
Yuka Okamitsu ◽  
Takashi Yamamoto ◽  
Takayoshi Fujii ◽  
Hiroshi Ochiai ◽  
Naoaki Sakamoto

1996 ◽  
Vol 47 (3) ◽  
pp. 543 ◽  
Author(s):  
BM Degnan ◽  
PR Rohde ◽  
MF Lavin

Embryonic and post-larval development of the tropical solitary ascidian Herdmania momus is shown to be similar to that of extensively studied ascidian model systems. H. momus development is rapid and temperature-dependent, with hatching occurring 8.5 h after fertilization at 28�C. An increase in total embryonic gene transcription is detected at the 110-cell stage or the onset of gastrulation. Treatment of early embryos with actinomycin D inhibits transcription and curtails morphogenetic cell movement in the early gastrula without immediately inhibiting cell division. The prevalence of homeobox-containing transcripts increases around the 110-cell stage and later in development. Isolated H. momus homeobox genes, expressed at the tailbud stage, have greatest sequence identity to members of Hox, otd/Otx, eve/Evx and cad/Cdx homeobox classes. Evidence from H. momus and other ascidians suggests that urochordates possess most of the homeobox genes of the chordate HOX cluster.


Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S33-S34 ◽  
Author(s):  
Daisuke Kurokawa ◽  
Takashi Kitajima ◽  
Keiko Mitsunaga-Nakatsubo ◽  
Shonan Amemiya ◽  
Hiraku Shimada ◽  
...  

In sea urchin embryogenesis it has been suggested that the initial territories are specified by a combination of the asymmetric distribution of cytoplasmic determinants and cell-cell interactions. At the 60-cell stage blastomeres clonally originated from founder cells divide the embryo into five distinct territories: small micromeres, large micromeres, vegetal plate, oral ectoderm and aboral ectoderm. The territories are identified by the expression of specific marker genes and their cell lineages (Davidson, 1989, 1991). The large micromeres are thought to play a role as an organiser and initiate a cascade of signal transduction toward overlying cells (Davidson, 1989). In this model the large micromeres induce the overlying veg2 tier, specifying the vegetal plate (Ransick & Davidson, 1993, 1995). The veg2 tier then induces the overlying cells, which include gut cells and cells of the prospective ectodermal territories (Wikramanayakeet al., 1995; Wikramanayake & Klein, 1997). Thus, the large micromeres, which are the prospective primary mesenchyme cells (PMCs), play a key role in cell fate specification and axis determination during sea urchin embryogenesis. Previous data suggested that the large micromeres are autonomously specified to become PMCs by maternally inherited determinants (Okazaki, 1975; Kitajima & Okazaki, 1980). An important question in sea urchins embryogenesis is the identity and function of the proposed maternal determinants.


2002 ◽  
Vol 282 (3) ◽  
pp. R727-R737 ◽  
Author(s):  
Mieko Shiwa ◽  
Takashi Murayama ◽  
Yasuo Ogawa

Unfertilized eggs of sea urchins ( Hemicentrotus pulcherrimus) demonstrated cyclic ADP-ribose (cADPR)-induced Ca2+ release and caffeine-induced Ca2+ release, both of which were considered to be mediated through the ryanodine receptor (RyR). We cloned cDNAs for sea urchin egg RyR (suRyR), which encode a 597-kDa protein of 5,317 amino acids. suRyR shares common structural features with known RyRs: the well-conserved COOH-terminal domain, which forms a functional Ca2+ channel, and a large hydrophilic NH2-terminal domain. suRyR shows amino acid sequence identity (43–45%) similar to the three mammalian RyR isoforms. Phylogenetic analysis indicates that suRyR branched from three isoforms of vertebrates before they diverged, suggesting that suRyR may be the only RyR isoform in the sea urchin. Four in-frame insertions were found in suRyR cDNAs, one of which was novel and unique, in that it had a cluster of serine residues. The transcripts with and without these insertions were found in the egg RNA. These results suggest that suRyR may be expressed as a functional Ca2+-induced Ca2+ release channel, which might also be involved in cADPR-induced Ca2+ release.


Development ◽  
2001 ◽  
Vol 128 (24) ◽  
pp. 4935-4948 ◽  
Author(s):  
Mizuki Aihara ◽  
Shonan Amemiya

Indirect-developing sea urchins eventually form an adult rudiment on the left side through differential left-right development in the late larval stages. Components of the adult rudiment, such as the hydropore canal, the hydrocoel and the primary vestibule, all develop on the left side alone, and are the initial morphological traits that exhibit left-right differences. Although it has previously been shown that partial embryos dissected in cleavage stages correctly determine the normal left-right placement of the adult rudiment, the timing and the mechanism that determine left-right polarity during normal development remain unknown. In order to determine these, we have carried out a series of regional operations in two indirect-developing sea urchin species. We excised all or a part of tissue on the left or right side of the embryos during the early gastrula stage and the two-armed pluteus stage, and examined the left-right position of the adult rudiment, and of its components. Excisions of tissues on the left side of the embryos, regardless of stage, resulted in formation of a left adult rudiment, as in normal development. By contrast, excisions on the right side of the embryos resulted in three different types of impairment in the left-right placement of the adult rudiment in a stage-dependent manner. Generally, when the adult rudiment was definitively formed only on the right side of the larvae, no trace of basic development of the components of the adult rudiment was found on the left side, indicating that a right adult rudiment results from reversal of the initial left-right polarity but not from a later inhibitory effect on the development of an adult rudiment. Thus, we suggest that determination of the left-right placement of the adult rudiment depends on a process, which is directed by the right side, of polarity establishment during the gastrula and the prism stages; however, but commitment of the cell fate to initiate formation of the adult rudiment occurs later than the two-armed pluteus stage.


Sign in / Sign up

Export Citation Format

Share Document