Immunolocalization of retinol-binding protein, cellular retinoic acid-binding protein I and retinoid X receptor b in the porcine reproductive tract during the oestrous cycle

2001 ◽  
Vol 13 (6) ◽  
pp. 421 ◽  
Author(s):  
Florian J. Schweigert ◽  
Christiane Siegling

Retinoid-binding proteins and nuclear receptors are expressed in the reproductive tissues of different species and their expression is hormonally regulated. In the present study, we demonstrated immunocytochemically the temporal and spatial localization of retinol-binding protein (RBP), cellular retinoic acid-binding protein I (CRABPI) and retinoid X receptor β (RXRβ) in porcine ovary, oviduct and uterus during the oestrous cycle. RBP and CRABPI were localized in the cytoplasm, whereas RXRβ occurred in the nucleus. RBP was not detected in either the ovary or the oviduct at any stage of the oestrous cycle. CRABPI was present in luteal cells of the ovary only during dioestrus and in glandular and ciliated cells of the oviduct during oestrus. In the ovary, RXRβ was always present in granulosa cells and germinal epithelium, with highest levels observed during oestrus. In the uterus, RXRβ was present throughout the cycle in both the endometrium and the myometrium. However, changes in RXRβ were observed in the endometrium, with highest levels observed during dioestrus. RBP and CRABPI could be observed in the endometrium only during dioestrus. The results show that the occurrence of retinoid-binding proteins and nuclear receptors in individual tissues of the reproductive tract are strongly dependent on the stage of the oestrous cycle. In the oviduct, the expression of CRABPI seems to be dependent on oestrogen, whereas in the uterus the expression of RBP and CRABPI is influenced by progesterone. The association of expression in different sections of the reproductive tissues investigated shows that the presence of specific proteins involved in retinoid metabolism was dependent on events associated with ovulation, the migration of the oocyte through the oviduct and the possible implantation of the blastocyst into the uterus.


1985 ◽  
Vol 232 (2) ◽  
pp. 577-583 ◽  
Author(s):  
B P Sani ◽  
A Vaid ◽  
J C Comley ◽  
J A Montgomery

The present study deals with the discovery and partial characterization of specific binding proteins for retinol and retinoic acid from filarial parasites (worms of the superfamily Filarioidea), including those from two species of Onchocerca. These binding proteins, which are distinct in their physicochemical properties and in the mode of ligand interactions from the host-tissue retinoid-binding proteins, may be involved in the mediation of the putative biological roles of retinoids in the control of parasitic growth, differentiation and reproduction. Parasite retinol-binding protein and retinoic acid-binding protein exhibited specificity for binding retinol and retinoic acid respectively. Both the binding proteins showed an s20,w value of 2.0 S. On gel filtration, both proteins were retarded to a position corresponding to the same molecular size (19.0 kDa). On preparative columns, the parasite binding proteins exhibited isoelectric points at pH 5.7 and 5.75. Unlike the retinoid-binding proteins of mammalian and avian origin, the parasite retinoid-binding proteins showed a lack of mercurial sensitivity in ligand binding. The comparative amounts of retinoic acid-binding protein in five parasites, Onchocerca volvulus, Onchocerca gibsoni, Dipetalonema viteae, Brugia pahangi and Dirofilaria immitis, were between 2.7 and 3.1 pmol of retinoic acid bound/mg of extractable protein. However, the levels of parasite retinol-binding protein were between 4.8 and 5.8 pmol/mg, which is considerably higher than the corresponding levels of cellular retinol-binding protein of mammalian and avian origin. Both retinol- and retinoic acid-binding-protein levels in O. volvulus-infected human nodules and O. gibsoni-infected bovine nodules were similar to their levels in mammalian tissues. Also, these nodular binding proteins, like the host-binding proteins, exhibited mercurial sensitivity to ligand interactions.



Development ◽  
1993 ◽  
Vol 118 (1) ◽  
pp. 267-282 ◽  
Author(s):  
E. Ruberte ◽  
V. Friederich ◽  
P. Chambon ◽  
G. Morriss-Kay

We have studied the transcript distribution of the retinoic acid receptors (RARs) and the cytoplasmic retinoid binding proteins during embryonic development of the mouse nervous system. Of the three retinoic acid receptors, only RAR-gamma was not expressed in developing neural structures. RAR-beta and RAR-alpha both showed rostral limits of expression in the medulla oblongata equivalent to their patterns of expression in the neuroepithelium of the early hindbrain neural tube. Within their expression domains in the spinal cord and brain, RAR-alpha was ubiquitously expressed, whereas RAR-beta transcripts showed very specific patterns of expression, suggesting that this receptor is involved in mediating retinoic acid-induced gene expression in relation to the development of specific neural structures or pathways. The cytoplasmic binding proteins, cellular retinoic acid binding proteins type I and II (CRABP I and CRABP II) and cellular retinol binding protein type I (CRBP I), were widely distributed in developing neural structures. Their differential spatiotemporal patterns of expression suggest that fine regional control of availability of retinoic acid (RA) to the nuclear receptors plays an important role in organization and differentiation of the nervous system. For instance, expression of CRABP I in the migrating cells that give rise to the olivary and pontine nuclei, which develop abnormally in conditions of retinoid excess, is consistent with observations from a variety of other systems indicating that CRABP I limits the access of RA to the nuclear receptors in normal physiological conditions. Similarly, expression of CRBP I in the choroid plexuses, which develop abnormally in conditions of vitamin A deficiency, is consistent with observations indicating that this binding protein mediates the synthesis of RA in tissues requiring high levels of RA for their normal developmental programme. RAR-beta and CRABP II, which are both RA-inducible, were coexpressed with CRBP I in the choroid plexus and in many other sites, perhaps reflecting the fact that all three genes are RA-inducible. The function of CRABP II is not well understood; its domains of expression showed overlaps with both CRABP I and CRBP I.





2002 ◽  
Vol 362 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Manickavasagam SUNDARAM ◽  
Daan M. F. van AALTEN ◽  
John B. C. FINDLAY ◽  
Asipu SIVAPRASADARAO

Members of the lipocalin superfamily share a common structural fold, but differ from each other with respect to the molecules with which they interact. They all contain eight β-strands (A—H) that fold to form a well-defined β-barrel, which harbours a binding pocket for hydrophobic ligands. These strands are connected by loops that vary in size and structure and make up the closed and open ends of the pocket. In addition to binding ligands, some members of the family interact with other macromolecules, the specificity of which is thought to be associated with the variable loop regions. Here, we have investigated whether the macromolecular-recognition properties can be transferred from one member of the family to another. For this, we chose the prototypical lipocalin, the plasma retinol-binding protein (RBP) and its close structural homologue the epididymal retinoic acid-binding protein (ERABP). RBP exhibits three molecular-recognition properties: it binds to retinol, to transthyretin (TTR) and to a cell-surface receptor. ERABP binds retinoic acid, but whether it interacts with other macromolecules is not known. Here, we show that ERABP does not bind to TTR and the RBP receptor, but when the loops of RBP near the open end of the pocket (L-1, L-2 and L-3, connecting β-strands A—B, C—D and E—F, respectively) were substituted into the corresponding regions of ERABP, the resulting chimaera acquired the ability to bind TTR and the receptor. L-2 and L-3 were found to be the major determinants of the receptor- and TTR-binding specificities respectively. Thus we demonstrate that lipocalins serve as excellent scaffolds for engineering novel biological functions.







Sign in / Sign up

Export Citation Format

Share Document