Superfine open pulled straws vitrification of porcine blastocysts does not require pretreatment with cytochalasin B and/or centrifugation

2010 ◽  
Vol 22 (5) ◽  
pp. 808 ◽  
Author(s):  
C. Cuello ◽  
J. Sanchez-Osorio ◽  
C. Almiñana ◽  
M. A. Gil ◽  
I. Parrilla ◽  
...  

The present study investigated the in vitro development of and cytoskeletal disruption suffered by in vivo-derived porcine blastocysts subjected to superfine open pulled straws (SOPS) vitrification. Blastocysts were either untreated prior to SOPS vitrification or were subjected to one of the following three pretreatment protocols: (1) centrifugation (12 min, 13 000g); (2) 25 min equilibration with 7.5 μg mL–1 cytochalasin B; or (3) equilibration with cytochalasin B followed by centrifugation. After 24 h culture, fresh (n = 32) and vitrified–warmed (n = 188) blastocysts were evaluated by stereomicroscopy, with survival and hatching rates recorded. Some blastocysts were stained with 4′,6′-diamidino-2-phenylindole and processed for cytoskeletal evaluation. Three cytoskeletal patterns were identified: Grade I, intact cytoskeleton; Grade II, gross maintenance of integrity, but with some clumps of actin within the cytoplasm; and Grade III, a highly disrupted cytoskeleton. There were no differences in the survival, hatching and cell death rats, total cell number or cytoskeletal integrity between the different vitrification groups. Cell death was greater for vitrified blastocysts than for fresh blastocysts (3.6 ± 0.4% v. 0.4 ± 0.7%, respectively; P < 0.05) and the percentage of blastocysts with a Grade I cytoskeletal pattern was lower for vitrified compared with fresh blastocysts (60.8% v. 92%, respectively; P < 0.05). The vitrified–warmed blastocysts that hatched during culture exhibited a Grade I cytoskeletal pattern. In conclusion, successful SOPS vitrification of porcine blastocysts does not require pretreatment with cytochalasin B and/or centrifugation.

Development ◽  
1988 ◽  
Vol 102 (4) ◽  
pp. 793-803 ◽  
Author(s):  
V.E. Papaioannou ◽  
K.M. Ebert

Total cell number as well as differential cell numbers representing the inner cell mass (ICM) and trophectoderm were determined by a differential staining technique for preimplantation pig embryos recovered between 5 and 8 days after the onset of oestrus. Total cell number increased rapidly over this time span and significant effects were found between embryos of the same chronological age from different females. Inner cells could be detected in some but not all embryos of 12–16 cells. The proportion of inner cells was low in morulae but increased during differentiation of ICM and trophectoderm in early blastocysts. The proportion of ICM cells then decreased as blastocysts expanded and hatched. Some embryos were cultured in vitro and others were transferred to the oviducts of immature mice as a surrogate in vivo environment and assessed for morphology and cell number after several days. Although total cell number did not reach in vivo levels, morphological development and cell number increase was sustained better in the immature mice than in vitro. The proportion of ICM cells in blastocysts formed in vitro was in the normal range.


Development ◽  
1977 ◽  
Vol 41 (1) ◽  
pp. 79-92
Author(s):  
Rosita Smith ◽  
Anne McLaren

In normal mouse embryos developing in vivo, the first appearance of the blastocyst cavity was found to be associated more closely with developmental age, judged by cell number, than with chronological age, i.e. elapsed time since ovulation. When development was slowed by in vitro culture, formation of the blastocoele was delayed. However, cell number itself was not a critical factor, since the number of cells per embryo could be doubled or tripled or halved by experimental manipulation without substantially affecting the timing of blastocoele formation. Experiments in which one cell division was suppressed with cytochalasin-B, leading to tetraploidy, showed that the number of cell divisions since fertilization was also not critical. A possible role is suggested either for nucleocytoplasmic ratio, or for the number of nuclear or chromosomal divisions or DNA replications since fertilization, all of which increase during cleavage.


2006 ◽  
Vol 18 (2) ◽  
pp. 185 ◽  
Author(s):  
Y. Agca ◽  
H. Men ◽  
S. F. Mullen ◽  
L. K. Riley ◽  
R. S. Prather ◽  
...  

The ability to produce porcine embryos of good quality will have a significant impact on a number of porcine assisted reproductive technologies, such as cloning, intracytoplasmic sperm injection, and embryo cryopreservation. However, porcine embryos resulting from current serum-free embryo culture systems differ significantly both structurally and functionally from those derived in vivo (Wang et al. 1999 Mol. Reprod. Dev. 53, 99-107). In this experiment, the quality of porcine embryos produced by North Carolina State University (NCSU)-23 medium (Petters and Wells 1993 J. Reprod. Fertil. Suppl. 1993, 48, 61-73) and porcine zygote medium (PZM)-1 (Yoshioka et al. 2002 Biol. Reprod. 66, 112-119) were compared by assessing the total cell number and the time course of in vitro blastocyst hatching. Porcine embryos were produced by in vitro maturation and fertilization using serum-free systems. After fertilization, presumptive zygotes were randomly allocated to either PZM-1 or NCSU-23 for subsequent development. On Day 4 of culture, the embryo culture media were supplemented with 10% fetal bovine serum (FBS). Day 6 blastocysts from each group were counted and the blastocysts were subsequently fixed in 4% formalin for counting the total cell number. The cell number in each embryo was determined by counting the nuclei after staining with bisbenzimide (Hoechst 33342). To assess the hatching ability of blastocysts, Day 6 blastocysts were cultured until Day 9 and hatched blastocysts were counted daily. Day 6 blastocyst rates (ratio of blastocysts to oocytes) and total cell number count were replicated three times. The time course of blastocyst hatching experiment was repeated four times. The data were analyzed using a chi-square test, Fisher's exact test, or Student's t-test. The blastocyst rate from culture in PZM-3 was 19.4 � 0.96% (mean � SEM), which was similar to that (16.7 � 3.2%) resulting from culture in NCSU-23 (P > 0.05). However, the total cell number in Day 6 blastocysts cultured in PZM-3 was significantly higher than for blastocysts cultured in NCSU-23 (57 � 3.1 vs. 46 � 1.7; P < 0.01). The total hatching rates (ratio of hatched blastocysts to total blastocysts) by Day 9 were similar between the two culture systems (50.1 � 9.1% vs. 50.7 � 4.1%; P > 0.05). However, on Day 6, 2.1% of blastocysts from PZM-3 culture hatched whereas no blastocysts from NCSU-23 culture hatched. The cumulative hatching rates from PZM-3 culture on Day 7 were significantly higher than those from NCSU-23 culture (15.1 � 3.8% vs. 2.6 � 1.1%; P < 0.01). In conclusion, these data suggest that blastocysts produced in PZM-3 medium have better quality than blastocysts produced in the NCSU-23 culture system as assessed by the total cell number and the time course of blastocyst hatching. This project was supported by a grant from the National Institutes of Health (U42 RR 018877).


2012 ◽  
Vol 24 (1) ◽  
pp. 161 ◽  
Author(s):  
B. K. Redel ◽  
L. D. Spate ◽  
A. N. Brown ◽  
R. S. Prather

It is vital that improvements are made to current culture environments because in vitro culture systems are suboptimal compared with in vivo. A previous transcriptional profiling endeavour conducted by Bauer et al. (2010 Biol. Reprod. 83, 791–798) identified hundreds of mRNA transcripts that were mis-expressed in porcine embryos fertilized in vivo and then cultured in vitro to Day 6 compared with in vivo Day-6 embryos. Enriched in the downregulated transcripts were 4 genes involved with the one carbon pool by folate KEGG pathway. This downregulation of genes involved with folate metabolism may illustrate an impaired folate homeostasis in embryos cultured in the current culture environment. The objective of this study was to determine the effects folate had on embryo development of in vitro fertilized embryos. Porcine cumulus–oocyte complexes were matured for 44 h in M199 supplemented with epidermal growth factor (EGF), FSH and LH. Oocytes with a visible polar body were selected and fertilized in modified tris buffered medium for 5 h and then placed into porcine zygote medium 3 with 0 mM, 0.2 mM, 0.4 mM and 0.8 mM folate to find the optimal concentration of folate. Twenty-eight hours post-fertilization, cleaved embryos were selected and moved into 25-μL drops of respective culture medium and cultured to Day 6 in a water-saturated atmosphere of 5% CO2, 5% O2, 90% N2, at 38.5°C. To determine the effect folate had on development, the blastocyst rate for each treatment group was measured. Results were log-transformed and analysed by using PROC GLM in SAS (SAS Institute Inc., Cary, NC). A least-significant difference post-test comparison was completed to determine if significant differences existed between treatment groups. The percentage of cleaved embryos on Day 6 that developed to blastocyst was 56.2%, 55.9%, 66.9% and 61.8% (n = 133, 149, 135 and 135) in 0 mM, 0.2 mM folate, 0.4 mM folate and 0.8 mM, respectively. The 0.4 mM folate group tended (P = 0.07) to have a higher number of cleaved embryos that developed to the blastocyst stage. Consequently, this concentration was used for all further embryo culture experiments. Differential staining was completed to compare the number of trophectoderm and inner cell mass nuclei for embryos cultured in 0 mM or 0.4 mM folate concentrations. Staining revealed that embryos cultured with folate had an increase in number of trophectoderm (29.7 ± 1.5 vs 24.4 ± 1.4 cells; P = 0.0058) and total cell (36.9 ± 1.0 vs 31.7 ± 1.0; P = 0.0007) numbers compared with embryos cultured without folate. These results illustrate that the addition of folate to current culture medium doesn't hinder development to blastocyst and by increasing trophectoderm and total cell number may give rise to better-quality in vitro-derived embryos. It is evident that using transcriptional profiling can be a great method of identifying ways to improve embryo culture systems and, in this case, supplementing with folate. Funded by Food for the 21st Century.


2011 ◽  
Vol 23 (1) ◽  
pp. 146
Author(s):  
C. N. Murphy ◽  
L. D. Spate ◽  
B. K. Bauer ◽  
R. S. Prather

One barrier to successfully making embryo transfer viable in the swine industry is an inability to consistently cryopreserve oocytes and embryos. This process is made difficult by the high lipid content of porcine oocytes and embryos. The objective of this study was to test the in vivo fertilized embryo’s sensitivity to vitrification. Gilts were inseminated on the first day of standing oestrus (Day 0) and then again 12 h later. On Day 2 the oviducts and tip of the uterine horns were flushed with PVA-treated TL-HEPES and 2-cell stage embryos were collected and placed into PVA-treated TL-HEPES and centrifuged at 17 000 × g. The treatment groups were 1) 300 mOsmo centrifuged for 6 min, 2) 500 mOsmo centrifuged for 6 min, 3) 500 mOsmo centrifuged for 12 min, and 4) 500 mOsmo centrifuged for 18 min. After centrifugation the embryos were transferred to Porcine Zygote Medium 3 (PZM3) and cultured to Day 6 or 7 at which point blastocysts were vitrified using 10% DMSO, 10% ethylene glycol in M199 supplemented with 20% FBS (holding medium) for 2 min. Embryos were transferred to holding media with 20% DMSO and 20% ethylene glycol and drawn into an open pulled straw via capillary reaction; it was then submerged into LN2. Embryos were thawed using a step down concentration of 0.33 mM and then 0.2 mM sucrose in holding media each for 6–7 min and then were moved to holding medium alone for 6 to 7 min. The embryos were washed in PZM3, then transferred to 500 μL of PZM3 and cultured for 18 h. Re-expanded embryos were observed, and the nuclei of all embryos were stained with Biz-benzimide and visualised with UV light to determine total cell number. After the embryos were centrifuged and cultured, there was no difference in development to blastocyst (SAS Institute, Cary, NC, USA; Proc GLM) with a mean percentage blastocyst of 85.1% and an N of 54, 51, 53, and 51, respectively, for each treatment. After thawing, percentage of embryos re-expanded was 23.5a, 26.4a,b, 43.2a,b, and 45.6b, respectively. Data was analysed using a PROC GLM in SAS (P < 0.05), with 37, 43, 30, and 36 embryos in each group, respectively. No difference in total cell number across treatments was detected after analysis using PROC GLM in SAS (P < 0.05) with a mean cell number of 29.0. These data suggest that in vivo matured and fertilized blastocysts can survive high osmolarity treatment, centrifugation, and vitrification. The data also show that a high osmolarity treatment centrifuged for 18 min leads to a greater number of re-expanded embryos post-thaw, which may be attributed to better separation of the lipid. Funded by the NIH NCRR R21RR025879 and Food for the 21st Century.


2016 ◽  
Vol 28 (2) ◽  
pp. 171
Author(s):  
J. A. Benne ◽  
L. D. Spate ◽  
B. M. Elliott ◽  
R. S. Prather

For decades it has been known that reactive oxidative species (ROS) form during in vitro embryo culture. A buildup of ROS can be detrimental to individual cells in the embryo and lead to a decrease in development and quality. To overcome oxidative stress in culture systems, additives, such as taurine and/or hypotaurine, have been used. In the pig, taurine or hypotaurine addition is deemed necessary for normal in vitro development. Another commonly used technique to reduce ROS is to culture embryos in a lowered oxygen environment (e.g. 5%). Porcine zygote medium 3 (PZM3) base culture medium is used in the following experiments and contains 5 mM hypotaurine, which is one of the most costly additives in the medium. The objective of this experiment was to determine if hypotaurine is still necessary if the embryos were cultured in 5% O2 from the zygote to the Day 6 blastocyst stage. In Experiment 1, oocytes were matured for 44 h and fertilized in vitro. After fertilization, presumptive zygotes were then transferred to 500 µL of MU-1 medium (PZM3 with 1.69 mM arginine) that either contained or did not contain hypotaurine for overnight culture at 20% O2. On Day 1, the same embryo culture plates were moved to 5% O2, 5% CO2, and 90% N2 and cultured to Day 6. The percent blastocyst stage was determined, and total cell number was counted in 3 of the 5 replicates in order to give us an indication of the embryo quality. The percent blastocyst in the controls (+hypotaurine) was 34.4% ± 2.8 and not different from the no hypotaurine (32.9% ± 2.2; N = 830; 5 replications; P > 0.10). Furthermore, total cell number was not different between the two groups (30.8 ± 1.5 v. 33.6 ± 1.8, respectively, N = 146; 3 replications; P > 0.10). In Experiment 2, the same experiment was repeated in somatic cell nuclear transfer derived embryos, which may be more sensitive to ROS due to the micromanipulation procedure. Wild type fetal fibroblast cells were used as donor cells. There was no significant difference in development to the blastocyst stage due to the presence or absence of hypotaurine (17.7% ± 2.5 v. 11.8% ± 2.3, respectively; N = 454; 4 replications; P = 0.07). All blastocyst data were analysed using the GENMOD procedure in SAS 9.4 (SAS Institute Inc., Cary, NC, USA), and cell number data were analysed using the PROC GLM also with SAS 9.4. These data show that porcine embryos can be efficiently cultured to the blastocyst stage without adding any oxygen free radical scavengers to the media when culturing in reduced oxygen atmosphere. Further studies include evaluating term development via embryo transfers and measuring ROS production of these embryos. Funding was provided by Food for the 21st Century and the National Institutes of Health (U42 OD011140).


2005 ◽  
Vol 17 (2) ◽  
pp. 162
Author(s):  
S. Akagi ◽  
B. Tsuneishi ◽  
S. Watanabe ◽  
S. Takahashi

It has been reported that aggregation of two nuclear transfer (NT) mouse embryos shows an improvement in full-term development (Boiani M et al. 2003 EMBO J. 22, 5304–5312). In this study, we examined the effect of aggregation on in vitro development of bovine NT embryos. As donor cells for NT, cumulus cells of passage 3–5 were used following culture in serum-starved medium for 5–7 days. NT was performed as previously described (Akagi S et al. 2003 Mol. Reprod. Dev. 66, 264–272). NT embryos were cultured in a serum-free medium (IVD-101, Research Institute of Functional Peptide Co., Ltd., Shimojo, Yamagat, Japan). Eight-cell-stage embryos on Day 2 or 16- to 32-cell-stage embryos on day 4 were used for embryo aggregation after removal of the zona pellucida. A small depression was made in a 25-μL drop of TCM-199 with 50 μg/mL phytohemagglutinin (TCM199/PHA) or IVD-101 using a darning needle. Two or three NT embryos were placed into the depression in the drop of TCM199/PHA for 20 min. NT aggregates were then moved into the depression in the drop of IVD-101 and cultured until Day 7. In vitro development of NT aggregates was summarized in Table 1. There were no differences in the cell number and ICM ratio of blastocysts between non-aggregated zona-intact and zona-free embryos. All aggregates of three NT embryos developed to the blastocyst stage and the cell number of these blastocysts was significantly higher than that of non-aggregated NT blastocysts. These results indicate that removal of the zona pellucida does not affect the cell number and ICM ratio of blastocysts and that aggregates of three NT embryos can develop to blastocysts with high cell numbers which are equivalent to in vivo-derived embryos (166 ± 11, Knijn HM et al. 2003 Biol. Reprod. 69, 1371–1378). Table 1. Development, cell number, and ICM ratio of NT aggregates


2006 ◽  
Vol 18 (2) ◽  
pp. 152
Author(s):  
C. Cuello ◽  
F. Berthelot ◽  
B. Delaleu ◽  
C. Almiñana ◽  
J. M. Vázquez ◽  
...  

The development of the open pulled straw vitrification has provided excellent results of in vitro porcine embryo development. Embryo quality evaluation after vitrification has been traditionally focused on morphological assessment performed by stereomicroscopy. The objective of this experiment was to evaluate the efficiency of the stereomicroscopic evaluation of vitrified-warmed (V) porcine blastocysts. Unhatched blastocysts were obtained after slaughter from Large-White gilts (n = 9). Blastocysts (n = 75) were vitrified and warmed using the protocol described by Cuello et al. (2004 Theriogenology 61, 353-361). After warming, vitrified blastocysts were cultured for 24 h. Then blastocysts were morphologically assessed for their progression and morphology by stereomicroscopy. Blastocysts that reformed their blastocoelic cavities showing an excellent appearance were considered viable. Some of the viable blastocysts kept their zonae pellucidae (V viable expanded blastocysts) and others hatched during the in vitro culture (V viable hatched blastocysts). The remaining blastocysts were classified as degenerated embryos. A group of fresh blastocysts was not vitrified and cultured in vitro for 24 h (control group). All of the control blastocysts were considered viable by stereomicroscopy. Some fresh, V viable expanded, V viable hatched, and V degenerated blastocysts (n = 13, n = 19, n = 9, and n = 9, respectively) were processed for ultrastructural study by light and transmission electron microscopy or stained with Hoechst-33342 and TUNEL for cell death evaluation (n = 16, n = 21, n = 11, and n = 6, respectively). All V hatched blastocysts showed ultrastructure similar to that of control hatched blastocysts. However, 26.3% of the V viable expanded blastocysts revealed important ultrastructural alterations in comparison with control expanded blastocysts. These observations suggest that stereomicroscopic evaluation was not efficient enough for V expanded blastocysts. As expected, degenerated blastocysts showed ultrastructural disintegration and disorganization. Hatched V blastocysts did not differ (P < 0.05) from control hatched blastocysts with regard to the total cell number and ratio of death cells (173 � 4.8 vs. 202.1 � 10.9 and 2.8 � 0.5% vs. 1.9 � 0.3%, respectively). However, V expanded blastocysts a had higher (P < 0.01) cell death level (4.3 � 3.4%) than that observed in the control expanded blastocysts (1.1 � 0.3%). Degenerated embryos showed the lowest (P < 0.01) total cell number (45.7 � 4.0). The 66.7% of the degenerated blastocysts exhibited wide TUNEL-labeled areas, and the remaining 33.3% showed TUNEL label over 19.4 � 6.3% of the cells. In conclusion, the hatching rate assessed by stereomicroscopy is a more efficient parameter than assessing the in vitro viability (ratio of blastocysts that reformed their blastocoelic cavities after warming) for estimating the quality of V blastocysts. This work was supported by CICYT (AGL2004-07546) and S�neca (01287/PD/04).


2015 ◽  
Vol 27 (1) ◽  
pp. 106
Author(s):  
J. Tao ◽  
Y. Zhang ◽  
D. Song ◽  
Y. Li ◽  
Y. Zhang

EPZ004777 (EPZ), a specific inhibitor of DOT1L (a methyltransferase of H3K79), can significantly improve the generation and quality of mouse induced pluripotent stem cells [Onder et al. 2012 Nature 483(7391), 598–602), suggesting that H3K79 dimethylation (H3K79me2) is involved in controlling cell pluripotency. To date, however, it is unclear whether H3K79me2 regulates development competency of animal cloned embryos. Thus, we aimed to examine the dynamic changes of H3K79me2 in pre-implantation cloned embryos of pigs, and to explore effect of EPZ treatment of embryos on in vitro development fate in order to lay the foundation for revealing the role of H3K79me2 and mechanisms in controlling cell pluripotency. Porcine cloned embryos were treated immediately when fusion and activation stimuli were conducted, in vitro with porcine zygote medium (PZM)-3, including 0.5, 5, or 50 nM EPZ (S7353, Selleck Chemicals, Houston, TX, USA) and 1‰ DMSO (vol/vol, control group) for 24 h, respectively. Then, they were transferred into fresh PZM-3 without EPZ. We found that there was no significant difference in cleavage rate among groups, whereas the blastocyst rate of 0.5 nM EPZ group was higher than that of control group [28.97 ± 2.65% (28/96) v. 17.13 ± 2.69% (17/96)]. No obvious difference was observed for the total cell number of blastocyst among groups. We further treated the SCNT embryos with 0.5 nM EPZ for 0 (control group), 12, 24, and 36 h, respectively. No significant differences were found for cleavage rate among groups, whereas the blastocyst rates of the 12- and 24-h groups were significantly higher than that of control and 36-h groups [28.56 ± 3.51% (27/97), 28.34 ± 3.00% (25/88) v. 16.32 ± 1.93% (16/97), 17.93 ± 0.64% (18/100)]. Except for the remarkable decrease in the 36-h treatment group, no obvious difference was observed for the total cell number of blastocyst among the other 3 groups. All the above experiments were repeated at least 3 times. These results suggested that treatment of porcine SCNT embryos with 0.5 nM EPZ for 12 to 24 h could improve their development during the early stage. Then, we tested whether the EPZ favoured the in vitro development of porcine SCNT embryos by regulating H3K79me2 reprogramming. Porcine SCNT embryos were treated with 0.5 nM EPZ from the onset of electric activation and fusion stimuli was performed, and then the H3K79me2 signal (by immune-fluorescent staining) and expression of DOT1L (by RT-qPCR) at different development stages was analysed. We found that the H3K79me2 signal in control group (without EPZ treatment) decreased slowly from the time of electric stimulation to 4 hpa, and it disappeared in 8 hpa stage. In the EPZ treatment group, H3K79me2 signal started decreasing from 2 hpa, and disappeared in 8 hpa stage. The mRNA level of DOT1L in EPZ treatment group was lower than that in control group, although the difference was not significant. Taken together, treatment with EPZ at the appropriate concentration and for an appropriate time can improve the early in vitro development of pig SCNT embryos, probably by inhibiting expression of DOT1L and facilitating reprogramming of H3K79me2.Research was supported by NSFC No. 31272442.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1574-1574 ◽  
Author(s):  
Xiangmeng Wang ◽  
Po Yee Mak ◽  
Hong Mu ◽  
Xuejie Jiang ◽  
Duncan Mak ◽  
...  

Abstract Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that regulates cell adhesion, proliferation, stem cell functions, and cell-microenvironment communications. It is activated and/or overexpressed in many malignant cells and promotes tumor progression and metastasis. Several small molecule FAK inhibitors have been developed and some of them have reached clinical trials in solid tumors. High FAK expression was found to be associated with enhanced blast migration, increased cellularity, and poor prognosis in AML, indicating that FAK could be a potential therapeutic target in AML. We showed previously that VS-4718, a potent and selective FAK inhibitor, effectively decreased viable cell number, and also induced cell death in leukemia cell lines with variable potencies in vitro, even in AML cells co-cultured with mesenchymal stromal cells (MSCs) (ASH 2015). To further examine the effect of VS-4718 in vivo, we transplanted Molm14-GFP/Luc cells into NSGS (NOD-SCID IL2Rgnull-3/GM/SF, NSG-SGM3) mice, and treated the mice with VS-4718 (75 mg/kg) twice a day via oral gavage. We found that VS-4718 as a single agent exerted anti-leukemia activity as assessed by in vivo imaging for leukemia burden, human CD45 positivity in mouse peripheral blood, and histological staining of mouse tissues. VS-4718 treated mice survived significantly longer than the untreated controls (medium survival 27 vs 20 days, P = 0.0003). FAK activates multiple signaling pathways and supports tumor cell survival. We found that inhibition of FAK with VS-4718 in Molm14 cells reduced the expression of MCL-1. The BCL-2 antagonist ABT-199 is being tested clinically for the treatment of hematological malignancies. However, as a single agent, ABT-199-treated cells can acquire drug resistance by upregulating MCL-1 and BCL-XL after treatment. We therefore hypothesized that combination of VS-4718 and ABT-199 would be more effective in inducing cell death and reversing the resistance of AML cells exposed to ABT-199 alone. In vitro studies showed that VS-4718 significantly improved the potency of ABT-199 in AML cell lines (ABT-199 EC50 at 24 h: 880.3 nM and 14.5 nM in the presence of 0.4 mM VS-4718, respectively, in Molm14 cells), and the combination of VS-4718 and ABT-199 also synergistically killed primary AML cells even when co-cultured with MSCs in the majority of samples examined, while largely sparing normal BM CD34+ cells. Furthermore, the upregulation of MCL-1 in ABT-199-treated AML cells was antagonized by combining ABT-199 with VS-4718. BCL-XL is known to be regulated by STAT5. The activation of STAT5, which can be regulated by FAK, is considered to be significant in maintaining MCL-1 expression in FLT3-ITD AML cells. We observed that treatment with VS-4718 decreased the level of p-STAT5 as well as MCL-1 and BCL-XL in Molm14 cells harboring FLT3-ITD mutation. These results suggest a novel therapeutic strategy for targeting FAK and BCL-2 family proteins for the treatment of AML. Disclosures Pachter: Verastem, Inc: Employment. Weaver:Verastem, Inc: Employment. Carter:PRISM Pharma/Eisai: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document