Effects of age on follicular fluid exosomal microRNAs and granulosa cell transforming growth factor-β signalling during follicle development in the mare

2015 ◽  
Vol 27 (6) ◽  
pp. 897 ◽  
Author(s):  
Juliano C. da Silveira ◽  
Quinton A. Winger ◽  
Gerrit J. Bouma ◽  
Elaine M. Carnevale

Age-related decline in fertility is a consequence of low oocyte number and/or low oocyte competence resulting in pregnancy failure. Transforming growth factor (TGF)-β signalling is a well-studied pathway involved in follicular development and ovulation. Recently, small non-coding RNAs, namely microRNAs (miRNAs), have been demonstrated to regulate several members of this pathway; miRNAs are secreted inside small cell-secreted vesicles called exosomes. The overall goal of the present study was to determine whether altered exosome miRNA content in follicular fluid from old mares is associated with changes in TGF-β signalling in granulosa cells during follicle development. Follicular fluid was collected at deviation (n = 6), mid-oestrus (n = 6) and preovulation (n = 6) for identification of exosomal miRNAs from young (3–12 years) and old (20–26 years) mares. Analysis of selected TGF-β signalling members revealed significantly increased levels of interleukin 6 (IL6) in granulosa cells from mid-oestrus compared with preovulatory follicles, and collagen alpha-2(I) chain (COL1A2) in granulosa cells from deviation compared with preovulatory follicles in young mares. In addition, granulosa cells from old mares had significantly altered levels of DNA-binding protein inhibitor ID-2 (ID2), signal transducer and activator of transcription 1 (STAT1) and cell division cycle 25A (CDC25A). Finally, changes in exosomal miRNA predicted to target selected TGF-β members were identified.

Reproduction ◽  
2008 ◽  
Vol 136 (6) ◽  
pp. 799-809 ◽  
Author(s):  
Davina Rosairo ◽  
Ileana Kuyznierewicz ◽  
Jock Findlay ◽  
Ann Drummond

Ovarian follicular growth and differentiation in response to transforming growth factor-β (TGFB) was investigated using postnatal and immature ovarian models. TGFB ligand and receptor mRNAs were present in the rat ovary 4–12 days after birth and at day 25. In order to assess the impact of TGFB1 on follicle growth and transition from the primordial through to the primary and preantral stages of development, we established organ cultures with 4-day-old rat ovaries. After 10 days in culture with FSH, TGFB1, or a combination of the two, ovarian follicle numbers were counted and an assessment of atresia was undertaken using TUNEL. Preantral follicle numbers declined significantly when treated with the combination of FSH and TGFB1, consistent with our morphological appraisal suggesting an increase in atretic primary and preantral follicles. To investigate the mechanisms behind the actions of TGFB1, we isolated granulosa cells and treated them with FSH and TGFB1. Markers of proliferative, steroidogenic, and apoptotic capacity were measured by real-time PCR. Cyclin D2 mRNA expression by granulosa cells was significantly increased in response to the combination of FSH and TGFB. The expression of forkhead homolog in rhabdomyosarcoma (Foxo1) mRNA by granulosa cells was significantly reduced in the presence of both FSH and TGFB1, individually and in combination regimes. By contrast, the expression of steroidogenic enzymes/proteins was largely unaffected by TGFB1. These data suggest an inhibitory role for TGFB1 (in the presence of FSH) in follicle development and progression.


Reproduction ◽  
2013 ◽  
Vol 146 (2) ◽  
pp. 169-179 ◽  
Author(s):  
Yexia Li ◽  
Yujie Jin ◽  
Yuxia Liu ◽  
Chunyan Shen ◽  
Jingxia Dong ◽  
...  

The function of Smad3, a downstream signaling protein of the transforming growth factor β (TGFβ) pathway, in ovarian follicle development remains to be elucidated. The effects of Smad3 on ovarian granulosa cells (GCs) in rat were studied. Female rats (21 days of age Sprague–Dawley) received i.p. injections of pregnant mare serum gonadotropin, and GCs were harvested for primary culture 48 h later. These cells were engineered to overexpress or knockdown Smad3, which were validated by immunohistochemistry and western blot. The expression of proliferating cell nuclear antigen (PCNA), cyclin D2, TGFβ receptor II (TGFβRII), protein kinase A (PKA), and FSH receptor (FSHR) was also detected by western blotting. Cell cycle and apoptosis of GCs were assayed by flow cytometry. The level of estrogen secreted by GCs was detected by ELISA. Smad3 overexpression promoted estrogen production and proliferation while inhibiting apoptosis of GCs. Reduction in Smad3 by RNAi resulted in reduced estrogen production and proliferation and increased apoptosis of GCs. Manipulation of Smad3 expression also resulted in changes in FSHR and PKA expression, suggesting that the effects of Smad3 on follicle development are related to FSHR-mediated cAMP signaling.


Zygote ◽  
1996 ◽  
Vol 4 (04) ◽  
pp. 317-321 ◽  
Author(s):  
Barbara C. Vanderhyden

Investigations of strains of mice defective in germ cell development have revealed the importance of oocytes for the initial stages of folliculogenesis (Pellaset al., 1991; Huanget al., 1993). Various aspects of follicular development are dependent upon and/or influenced by the presence of oocytes, including granulosa cell proliferation (Vanderhydenet al., 1990, 1992) and cumulus expansion (Buccioneet al., 1990; Salustriet al., 1990; Vanderhydenet al., 1990; Vanderhyden, 1993). We are investigating the possibility that oocytes influence one of the primary functions of granulosa cells: steroidogenesis. In many species, granulosa cells removed from preovulatory follicles luteinisein vitro(Channinget al., 1982), presumably due to loss of contact with follicular luteinisation inhibitory factor(s). Indeed, follicular fluid can prevent granulosa cell luteinisationin vitro(Ledwitz-Rigbyet al., 1977). Follicular fluid, however, may simply be the medium for transport of factors secreted by oocytes to regulate granulosa cell activities.


Reproduction ◽  
2009 ◽  
Vol 138 (1) ◽  
pp. 115-129 ◽  
Author(s):  
Francois Paradis ◽  
Susan Novak ◽  
Gordon K Murdoch ◽  
Michael K Dyck ◽  
Walter T Dixon ◽  
...  

This study aimed to describe the abundance and localization ofBMP2,BMP6,BMP15,GDF9,BMPR1A,BMPR1B,BMPR2andTGFBR1mRNA during pig preovulatory follicular development and to evaluate their implication in improving follicular maturity in the preovulatory period preceding the second versus first post-weaning oestrus. Oocytes, granulosa (GC) and theca cells (TC) were recovered from antral follicles of primiparous sows at day 1, 2 and 4 after weaning and at day 14, 16 and 20 of their subsequent oestrous cycle. Real-time PCR analysis revealed that with the exception ofBMP6mRNA, which was absent in GC, all genes were expressed in every cell type. AlthoughBMP6,BMP15andGDF9mRNA were most abundant in the oocyte, their expression remained relatively constant during follicular development. By contrast, receptorBMPR1BandTGFBR1expressions in the GC and TC were temporally regulated.BMPR1BmRNA abundance was positively correlated with plasma oestradiol (E2) suggesting that its regulation by oestrogen may be implicated in normal folliculogenesis. Interestingly, the increase inBMPR1BmRNA and protein abundance during the periovulatory period in GC and TC suggests a role for bone morphogenetic protein (BMP) 15 in the ovulatory process. Finally, expression of these ligands and receptors was not associated with potential differences in follicle maturity observed during the second versus first post-weaning preovulatory follicular wave. In conclusion, our results clearly demonstrate the presence of a complex signalling system within the pig follicle involving the transforming growth factor-β superfamily and their receptors, and provide evidence to support a role for BMP15 and BMPR1B during ovulation.


Sign in / Sign up

Export Citation Format

Share Document