Alterations in the cell cycle of mouse cumulus granulosa cells during expansion and mucification in vivo and in vitro

1996 ◽  
Vol 8 (6) ◽  
pp. 935 ◽  
Author(s):  
AW Schuetz ◽  
DG Whittingham ◽  
R Snowden

The cell cycle characteristics of mouse cumulus granulosa cells were determined before, during and following their expansion and mucification in vivo and in vitro. Cumulus-oocyte complexes (COC) were recovered from ovarian follicles or oviducts of prepubertal mice previously injected with pregnant mare serum gonadotrophin (PMSG) or a mixture of PMSG and human chorionic gonadotrophin (PMSG+hCG) to synchronize follicle differentiation and ovulation. Cell cycle parameters were determined by monitoring DNA content of cumulus cell nuclei, collected under rigorously controlled conditions, by flow cytometry. The proportion of cumulus cells in three cell cycle-related populations (G0/G1; S; G2/M) was calculated before and after exposure to various experimental conditions in vivo or in vitro. About 30% of cumulus cells recovered from undifferentiated (compact) COC isolated 43-45 h after PMSG injections were in S phase and 63% were in G0/G1 (2C DNA content). Less than 10% of the cells were in the G2/M population. Cell cycle profiles of cumulus cells recovered from mucified COC (oviducal) after PMSG+hCG-induced ovulation varied markedly from those collected before hCG injection and were characterized by the relative absence of S-phase cells and an increased proportion of cells in G0/G1. Cell cycle profiles of cumulus cells collected from mucified COC recovered from mouse ovarian follicles before ovulation (9-10 h after hCG) were also characterized by loss of S-phase cells and an increased G0/G1 population. Results suggest that changes in cell cycle parameters in vivo are primarily mediated in response to physiological changes that occur in the intrafollicular environment initiated by the ovulatory stimulus. A similar lack of S-phase cells was observed in mucified cumulus cells collected 24 h after exposure in vitro of compact COC to dibutyryl cyclic adenosine monophosphate (DBcAMP), follicle-stimulating hormone or epidermal growth factor (EGF). Additionally, the proportion of cumulus cells in G2/M was enhanced in COC exposed to DBcAMP, suggesting that cell division was inhibited under these conditions. Thus, both the G1-->S-phase and G2-->M-phase transitions in the cell cycle appear to be amenable to physiological regulation. Time course studies revealed dose-dependent changes in morphology occurred within 6 h of exposure in vitro of COC to EGF or DBcAMP. Results suggest that the disappearance of the S-phase population is a consequence of a decline in the number of cells beginning DNA synthesis and exit of cells from the S phase following completion of DNA synthesis. Furthermore, loss of proliferative activity in cumulus cells appears to be closely associated with COC expansion and mucification, whether induced under physiological conditions in vivo or in response to a range of hormonal stimuli in vitro. The observations indicate that several signal-transducing pathways mediate changes in cell cycle parameters during cumulus cell differentiation.

1984 ◽  
Vol 4 (1) ◽  
pp. 123-132
Author(s):  
R B Alterman ◽  
S Ganguly ◽  
D H Schulze ◽  
W F Marzluff ◽  
C L Schildkraut ◽  
...  

The mechanisms responsible for the periodic accumulation and decay of histone mRNA in the mammalian cell cycle were investigated in mouse erythroleukemia cells, using a cloned mouse H3 histone gene probe that hybridizes with most or all H3 transcripts. Exponentially growing cells were fractionated into cell cycle-specific stages by centrifugal elutriation, a method for purifying cells at each stage of the cycle without the use of treatments that arrest growth. Measurements of H3 histone mRNA content throughout the cell cycle show that the mRNA accumulates gradually during S phase, achieving its highest value in mid-S phase when DNA synthesis is maximal. The mRNA content then decreases as cells approach G2. These results demonstrate that the periodic synthesis of histones during S phase is due to changes in the steady-state level of histone mRNA. They are consistent with the conventional view in which histone synthesis is regulated coordinately with DNA synthesis in the cell cycle. The periodic accumulation and decay of H3 histone mRNA appear to be controlled primarily by changes in the rate of appearance of newly synthesized mRNA in the cytoplasm, determined by pulse-labeling whole cells with [3H]uridine. Measurements of H3 mRNA turnover by pulse-chase experiments with cells in S and G2 did not provide evidence for changes in the cytoplasmic stability of the mRNA during the period of its decay in late S and G2. Furthermore, transcription measurements carried out by brief pulse-labeling in vivo and by in vitro transcription in isolated nuclei indicate that the rate of H3 gene transcription changes to a much smaller extent than the steady-state levels of the mRNA or the appearance of newly synthesized mRNA in the cytoplasm. The results suggest that post-transcriptional processes make an important contribution to the periodic accumulation and decay of histone mRNA and that these processes may operate within the nucleus.


1984 ◽  
Vol 4 (1) ◽  
pp. 123-132 ◽  
Author(s):  
R B Alterman ◽  
S Ganguly ◽  
D H Schulze ◽  
W F Marzluff ◽  
C L Schildkraut ◽  
...  

The mechanisms responsible for the periodic accumulation and decay of histone mRNA in the mammalian cell cycle were investigated in mouse erythroleukemia cells, using a cloned mouse H3 histone gene probe that hybridizes with most or all H3 transcripts. Exponentially growing cells were fractionated into cell cycle-specific stages by centrifugal elutriation, a method for purifying cells at each stage of the cycle without the use of treatments that arrest growth. Measurements of H3 histone mRNA content throughout the cell cycle show that the mRNA accumulates gradually during S phase, achieving its highest value in mid-S phase when DNA synthesis is maximal. The mRNA content then decreases as cells approach G2. These results demonstrate that the periodic synthesis of histones during S phase is due to changes in the steady-state level of histone mRNA. They are consistent with the conventional view in which histone synthesis is regulated coordinately with DNA synthesis in the cell cycle. The periodic accumulation and decay of H3 histone mRNA appear to be controlled primarily by changes in the rate of appearance of newly synthesized mRNA in the cytoplasm, determined by pulse-labeling whole cells with [3H]uridine. Measurements of H3 mRNA turnover by pulse-chase experiments with cells in S and G2 did not provide evidence for changes in the cytoplasmic stability of the mRNA during the period of its decay in late S and G2. Furthermore, transcription measurements carried out by brief pulse-labeling in vivo and by in vitro transcription in isolated nuclei indicate that the rate of H3 gene transcription changes to a much smaller extent than the steady-state levels of the mRNA or the appearance of newly synthesized mRNA in the cytoplasm. The results suggest that post-transcriptional processes make an important contribution to the periodic accumulation and decay of histone mRNA and that these processes may operate within the nucleus.


1992 ◽  
Vol 3 (4) ◽  
pp. 389-401 ◽  
Author(s):  
R L Marraccino ◽  
E J Firpo ◽  
J M Roberts

Using a protocol for selecting cells on the basis of both size and age (with respect to the preceding mitosis), we isolated highly synchronous human G1 cells. With this procedure, we demonstrated that the p34 CDC2 kinase was activated at the start of S phase. Cyclin A synthesis began at the same time, and activation of the p34 CDC2 kinase at the start of S phase was, at least in part, due to its association with cyclin A. Furthermore, cells synchronized in late G1 by exposure to the drug mimosine contain active cyclin A/p34 CDC2 kinase, indicating that p34 CDC2 activation can occur before DNA synthesis begins. Thus, the cyclin A/CDC2 complex, which previously has been shown to be sufficient to start SV40 DNA synthesis in vitro, assembles and is activated at the start of S phase in vivo.


1988 ◽  
Vol 8 (5) ◽  
pp. 1923-1931
Author(s):  
N H Heintz ◽  
B W Stillman

A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4 degrees C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases. These studies show that chromosomal DNA replication in isolated nuclei is mediated by stable replication forks that are assembled in a temporally specific fashion in vivo and indicate that the synthetic mechanisms observed in vitro accurately reflect those operative in vivo.


1988 ◽  
Vol 8 (5) ◽  
pp. 1923-1931 ◽  
Author(s):  
N H Heintz ◽  
B W Stillman

A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4 degrees C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases. These studies show that chromosomal DNA replication in isolated nuclei is mediated by stable replication forks that are assembled in a temporally specific fashion in vivo and indicate that the synthetic mechanisms observed in vitro accurately reflect those operative in vivo.


2021 ◽  
Author(s):  
◽  
Zaramasina Clark

<p>The number of cycles of assisted reproductive technologies (ART) performed increased by ~9.5 % globally between 2008 and 2010. In spite of this, the success rate in terms of delivery was only ~19.0 % (Dyer et al., 2016). This discrepancy between the demand for, and success of, these technologies necessitates the development of tools to improve ART efficiency. To facilitate this, a better understanding of how the microenvironment changes within the developing follicle to culminate in a mature, developmentally-competent oocyte is required. This study employed an in vivo and in vitro ovine model to investigate the relationship between the surrounding microenvironment and oocyte maturation, and in particular, the attainment of oocyte developmental competency and high-quality embryos.  The first objective of this PhD study was to comprehensively investigate the changing microenvironment of in vivo matured, presumptive preovulatory (PPOV) follicles from wild-type (++) and high ovulation rate (OR; I+B+) ewes. The high OR ewes were heterozygous carriers of mutations in BMP15 (I+) and BMPRIB (B+). Functional differences in follicular somatic (granulosa and cumulus) cells between these genotypes, including differential gonadotropin responsiveness of granulosa cells, composition of follicular fluid and gene expression profiles in cumulus cells were evident. These differences emerged as part of a compensatory mechanism by which oocytes from smaller follicles, containing fewer granulosa cells, achieved developmental competency in I+B+ ewes.  The second objective of this PhD study was to develop new approaches for improving current in vitro maturation (IVM) strategies. The first approach utilised in this study focused on developing biomarkers that could be used to improve prediction of developmental competency in oocytes and in vitro produced embryos. This involved interrogating the hypothesis that a combination of molecular and morphokinetic biomarkers would better predict the developmental competency of oocytes and embryos compared to using these biomarkers alone. The second approach utilised in this PhD study tested the effects of modulating IVM conditions to better mimic the follicular microenvironment of a high, compared to a low, OR species on oocyte developmental competency and embryo quality. This involved supplementing IVM media with different ratios of two oocyte-secreted growth factors, i.e. GDF9:BMP15, that were representative of low or high OR species. These approaches demonstrated significant potential and warrant further investigation.  The most significant finding of this study was that despite variances in the surrounding microenvironment during in vivo and in vitro oocyte maturation that culminated in differential gene expression patterns in cumulus cells, and divergent gonadotropin-responsiveness of granulosa cells, the gene expression signatures of developmentally-competent oocytes and the morphokinetics of high-quality embryos were unaltered. This confirms the value of developing such biomarkers for oocyte development competency and embryo quality that remain unaltered despite a changing surrounding environment. Interestingly, simulating the ratio of GDF9:BMP15 that oocytes from high OR species are exposed to during maturation improved developmental competency in oocytes as demonstrated by increased blastocyst rates. Furthermore, this study has demonstrated that combinations of molecular (cumulus cell gene expression) and morphokinetic biomarkers improved the ability to predict developmental competency in oocytes and embryos. Overall, this study revealed novel information regarding the follicular microenvironment during final maturation and identified several novel approaches to improving the efficiency of ART.</p>


Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1647-1653 ◽  
Author(s):  
A Raza ◽  
Y Maheshwari ◽  
HD Preisler

The proliferative characteristics of myeloid leukemias were defined in vivo after intravenous infusions of bromodeoxyuridine (BrdU) in 40 patients. The percentage of S-phase cells obtained from the biopsies (mean, 20%) were significantly higher (P = .00003) than those determined from the bone marrow (BM) aspirates (mean, 9%). The post- BrdU infusion BM aspirates from 40 patients were incubated with tritiated thymidine in vitro. These double-labeled slides were utilized to determine the duration of S-phase (Ts) in myeloblasts and their total cell cycle time (Tc). The Ts varied from four to 49 hours (mean, 19 hours; median, 17 hours). Similarly, there were wide variations in Tc of individual patients ranging from 16 to 292 hours (mean, 93 hours; median, 76 hours). There was no relationship between Tc and the percentage of S-phase cells, but there was a good correlation between Tc and Ts (r = .8). Patients with relapsed acute nonlymphocytic leukemia (ANLL) appeared to have a longer Ts and Tc than those studied at initial diagnosis. A subgroup of patients at either extreme of Tc were identified who demonstrated clinically documented resistance in response to multiple courses of chemotherapy. We conclude that Ts and Tc provide additional biologic information that may be valuable in understanding the variations observed in the natural history of ANLL.


2016 ◽  
Vol 143 ◽  
pp. 1-7 ◽  
Author(s):  
V. Praveen Chakravarthi ◽  
S.S.R. Kona ◽  
A.V.N. Siva Kumar ◽  
M. Bhaskara ◽  
V.H. Rao

2018 ◽  
Vol 30 (12) ◽  
pp. 1728 ◽  
Author(s):  
M. Arias-Álvarez ◽  
R. M. García-García ◽  
J. López-Tello ◽  
P. G. Rebollar ◽  
A. Gutiérrez-Adán ◽  
...  

The developmental competence of in vitro maturation (IVM) oocytes can be enhanced by antioxidant agents. The present study investigated, for the first time in the rabbit model, the effect of adding α-tocopherol (0, 100, 200 and 400 µM) during IVM on putative transcripts involved in antioxidant defence (superoxide dismutase 2, mitochondrial (SOD2), glutathione peroxidase 1 (GPX1), catalase (CAT)), cell cycle regulation and apoptosis cascade (apoptosis tumour protein 53 (TP53), caspase 3, apoptosis-related cysteine protease (CASP3)), cell cycle progression (cellular cycle V-Akt murine thymoma viral oncogene homologue 1 (AKT1)), cumulus expansion (gap junction protein, alpha 1, 43 kDa (GJA1) and prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclo-oxygenase) (PTGS2)) and metabolism (glucose-6-phosphate dehydrogenase (G6PD)). Meiotic progression, mitochondrial reallocation, cumulus cell apoptosis and the developmental competence of oocytes after IVF were also assessed. Expression of SOD2, CAT, TP53, CASP3 and GJA1 was downregulated in cumulus–oocyte complexes (COCs) after IVM with 100 μM α-tocopherol compared with the group without the antioxidant. The apoptotic rate and the percentage of a non-migrated mitochondrial pattern were lower in COCs cultured with 100 μM α-tocopherol, consistent with better-quality oocytes. In fact, early embryo development was improved when 100 μM α-tocopherol was included in the IVM medium, but remained low compared with in vivo-matured oocytes. In conclusion, the addition of 100 μM α-tocopherol to the maturation medium is a suitable approach to manage oxidative stress and apoptosis, as well as for increasing the in vitro developmental competence of rabbit oocytes.


2012 ◽  
Vol 24 (1) ◽  
pp. 210
Author(s):  
L. D. Spate ◽  
B. K. Redel ◽  
K. M. Whitworth ◽  
W. G. Spollen ◽  
S. M. Blake ◽  
...  

In contrast to oocytes matured in vitro, porcine embryos that result from in vivo maturation and fertilization have a high developmental competence and readily make the transition from oocyte to blastocyst. This observation led us to investigate the transcript profile differences between in vivo- and in vitro-matured porcine oocytes. For the in vivo-matured group, oviducts of 3 gilts of similar genetic background were flushed 2 days after detection of standing oestrus. MII oocytes were collected in pools of 10 and snap frozen in liquid nitrogen for RNA isolation. The in vitro-matured oocytes were obtained by euthanizing 3 gilts, again with a similar genetic background and recovering the ovaries. Follicles (2 to 8 mm in size) were aspirated and oocytes with multiple layers of cumulus cells and uniform cytoplasm were placed in M-199 supplemented with LH, FSH and epidermal growth factor for 42 h. Upon maturation, cumulus cells were stripped and the healthy MII oocytes were collected in pools of 10 and snap frozen. Total RNA was extracted from 3 pools of 10 oocytes for both treatments using an All prep DNA/RNA micro isolation kit (Qiagen, Valencia, CA, USA). Complementary DNA was synthesized using oligo (dT′) primed reverse transcriptase with superscript III (Invitrogen, Carlsbad, CA, USA). Second-strand cDNA was synthesized using DNA polymerase I and sequenced using Illumina Genome Analyzer II. All reads were aligned to a custom-built porcine transcriptome. There were over 18 million reads in the 2 maturation groups that tiled to the 34 433-member transcriptome: 1317 transcripts were detected with a P ≤ 0.1 (Students t-test), a minimum of 7 reads in at least 1 of the treatments and ≥2-fold difference. Real-time PCR was used on selected transcripts. Comparative CT Method was used on an IQ real-time PCR system with the Bio–Rad SYBR green mix. Statistical differences were determined using the Proc general linear model procedure of SAS (SAS Institute Inc., Cary, NC) and means separated with a l.s.d. (P ≤ 0.05). The misrepresented transcripts from the sequencing data were also characterized using the functional annotation tool DAVID. Twelve pathways were overrepresented in the in vitro-matured oocytes (the top 4 are pathways to cancer, spliceosome, cell cycle and ubiquitin-mediated proteolysis). Eight pathways were underrepresented in the in vitro-matured oocytes (the top 4 are cytoskeleton regulation, T-cell receptor signaling pathway, ubiquitin-mediated proteolysis and cell cycle). Eight transcripts were selected for real-time PCR. ZP2 was higher in the in vitro-matured oocytes as determined by both sequencing and real time. ATG4, HSP90, UBAP2 and SOX4 were not different, regardless of assay. SLC7A3, MRPS36 and PDHX2 were not different based on sequencing, but based on real-time MRPS36 and PDHX2, were higher in the in vivo group and SLC7A3 was higher in the in vitro group. In conclusion, there is an abundance of misregulated transcripts and altered pathways in in vitro-matured oocytes. This dataset is a tool that may provide clues to improve the in vitro maturation process so that in vitro-matured oocytes will be more like their in vivo-matured counterparts, thus improving developmental competence. Funded by Food for the 21st Century.


Sign in / Sign up

Export Citation Format

Share Document