scholarly journals α-Tocopherol modifies the expression of genes related to oxidative stress and apoptosis during in vitro maturation and enhances the developmental competence of rabbit oocytes

2018 ◽  
Vol 30 (12) ◽  
pp. 1728 ◽  
Author(s):  
M. Arias-Álvarez ◽  
R. M. García-García ◽  
J. López-Tello ◽  
P. G. Rebollar ◽  
A. Gutiérrez-Adán ◽  
...  

The developmental competence of in vitro maturation (IVM) oocytes can be enhanced by antioxidant agents. The present study investigated, for the first time in the rabbit model, the effect of adding α-tocopherol (0, 100, 200 and 400 µM) during IVM on putative transcripts involved in antioxidant defence (superoxide dismutase 2, mitochondrial (SOD2), glutathione peroxidase 1 (GPX1), catalase (CAT)), cell cycle regulation and apoptosis cascade (apoptosis tumour protein 53 (TP53), caspase 3, apoptosis-related cysteine protease (CASP3)), cell cycle progression (cellular cycle V-Akt murine thymoma viral oncogene homologue 1 (AKT1)), cumulus expansion (gap junction protein, alpha 1, 43 kDa (GJA1) and prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclo-oxygenase) (PTGS2)) and metabolism (glucose-6-phosphate dehydrogenase (G6PD)). Meiotic progression, mitochondrial reallocation, cumulus cell apoptosis and the developmental competence of oocytes after IVF were also assessed. Expression of SOD2, CAT, TP53, CASP3 and GJA1 was downregulated in cumulus–oocyte complexes (COCs) after IVM with 100 μM α-tocopherol compared with the group without the antioxidant. The apoptotic rate and the percentage of a non-migrated mitochondrial pattern were lower in COCs cultured with 100 μM α-tocopherol, consistent with better-quality oocytes. In fact, early embryo development was improved when 100 μM α-tocopherol was included in the IVM medium, but remained low compared with in vivo-matured oocytes. In conclusion, the addition of 100 μM α-tocopherol to the maturation medium is a suitable approach to manage oxidative stress and apoptosis, as well as for increasing the in vitro developmental competence of rabbit oocytes.

2017 ◽  
Vol 29 (9) ◽  
pp. 1667 ◽  
Author(s):  
M. Arias-Álvarez ◽  
R. M. García-García ◽  
J. López-Tello ◽  
P. G. Rebollar ◽  
A. Gutiérrez-Adán ◽  
...  

In vivo-matured cumulus–oocyte complexes are valuable models in which to assess potential biomarkers of rabbit oocyte quality that contribute to enhanced IVM systems. In the present study we compared some gene markers of oocytes and cumulus cells (CCs) from immature, in vivo-matured and IVM oocytes. Moreover, apoptosis in CCs, nuclear maturation, mitochondrial reallocation and the developmental potential of oocytes after IVF were assessed. In relation to cumulus expansion, gene expression of gap junction protein, alpha 1, 43 kDa (Gja1) and prostaglandin-endoperoxide synthase 2 (Ptgs2) was significantly lower in CCs after in vivo maturation than IVM. In addition, there were differences in gene expression after in vivo maturation versus IVM in both oocytes and CCs for genes related to cell cycle regulation and apoptosis (V-Akt murine thymoma viral oncogene homologue 1 (Akt1), tumour protein 53 (Tp53), caspase 3, apoptosis-related cysteine protease (Casp3)), oxidative response (superoxide dismutase 2, mitochondrial (Sod2)) and metabolism (glucose-6-phosphate dehydrogenase (G6pd), glyceraldehyde-3-phosphate dehydrogenase (Gapdh)). In vivo-matured CCs had a lower apoptosis rate than IVM and immature CCs. Meiotic progression, mitochondrial migration to the periphery and developmental competence were higher for in vivo-matured than IVM oocytes. In conclusion, differences in oocyte developmental capacity after IVM or in vivo maturation are accompanied by significant changes in transcript abundance in oocytes and their surrounding CCs, meiotic rate, mitochondrial distribution and apoptotic index. Some of the genes investigated, such as Gja1, could be potential biomarkers for oocyte developmental competence in the rabbit model, helping improve in vitro culture systems in these species.


2011 ◽  
Vol 23 (1) ◽  
pp. 23 ◽  
Author(s):  
Robert B. Gilchrist

The last 5–10 years of research in ovarian and oocyte biology has delivered some major new advances in knowledge of the molecular and cellular processes regulating oocyte maturation and oocyte developmental competence. These new insights include, among others: (1) the knowledge that oocytes regulate granulosa and cumulus cell differentiation, ovulation rate and fertility via the secretion of soluble paracrine growth factors; (2) new perspectives on the participation of cyclic nucleotides, phosphodiesterases and gap junctions in the regulation of oocyte meiotic arrest and resumption; and (3) the new appreciation of the mechanisms of LH-induced oocyte maturation and ovulation mediated by the follicular cascade of epidermal growth factor (EGF)-like peptides, the EGF receptor and their intracellular second messengers. These recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to oocyte in vitro maturation (IVM). Laboratory IVM methodologies have changed little over the past 20–30 years and IVM remains notably less efficient than hormone-stimulated IVF, limiting its wider application in reproductive medicine and animal breeding. The challenge for oocyte biologists and clinicians practicing IVM is to modernise clinical IVM systems to benefit from these new insights into oocyte–follicle cell interactions in vivo.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Guoying Zhang ◽  
Cheng Xue ◽  
Yiming Zeng

Abstract Background We have previously found that β-elemene could inhibit the viability of airway granulation fibroblasts and prevent airway hyperplastic stenosis. This study aimed to elucidate the underlying mechanism and protective efficacy of β-elemene in vitro and in vivo. Methods Microarray and bioinformatic analysis were used to identify altered pathways related to cell viability in a β-elemene-treated primary cell model and to construct a β-elemene-altered ceRNA network modulating the target pathway. Loss of function and gain of function approaches were performed to examine the role of the ceRNA axis in β-elemene's regulation of the target pathway and cell viability. Additionally, in a β-elemene-treated rabbit model of airway stenosis, endoscopic and histological examinations were used to evaluate its therapeutic efficacy and further verify its mechanism of action. Results The hyperactive ILK/Akt pathway and dysregulated LncRNA-MIR143HG, which acted as a miR-1275 ceRNA to modulate ILK expression, were suppressed in β-elemene-treated airway granulation fibroblasts; β-elemene suppressed the ILK/Akt pathway via the MIR143HG/miR-1275/ILK axis. Additionally, the cell cycle and apoptotic phenotypes of granulation fibroblasts were altered, consistent with ILK/Akt pathway activity. In vivo application of β-elemene attenuated airway granulation hyperplasia and alleviated scar stricture, and histological detections suggested that β-elemene's effects on the MIR143HG/miR-1275/ILK axis and ILK/Akt pathway were in line with in vitro findings. Conclusions MIR143HG and ILK may act as ceRNA to sponge miR-1275. The MIR143HG/miR-1275/ILK axis mediates β-elemene-induced cell cycle arrest and apoptosis of airway granulation fibroblasts by modulating the ILK/Akt pathway, thereby inhibiting airway granulation proliferation and ultimately alleviating airway stenosis.


2006 ◽  
Vol 18 (2) ◽  
pp. 271 ◽  
Author(s):  
T. S. Hussein ◽  
R. B. Gilchrist ◽  
J. G. Thompson

Paracrine factors secreted by the oocyte (oocyte-secreted factors, OSFs) regulate a broad range of cumulus cell functions including proliferation, differentiation, and apoptosis. The capacity of oocytes to regulate their own microenvironment by OSFs may in turn contribute to oocyte developmental competence. The aim of this study was to determine if OSFs have a direct influence on bovine oocyte developmental competence during in vitro maturation (IVM). Cumulus-oocyte complexes (COCs) were obtained by aspiration of >3-mm follicles from abattoir-derived ovaries. IVM was conducted in Bovine VitroMat (Cook Australia, Eight Mile Plains, Brisbane, Australia) supplemented with 0.1 IU/mL rhFSH for 24 h under 6% CO2 in air at 38.5�C. In the first experiment, COCs were co-cultured with denuded oocytes (DOs, 5/COC in 10 �L) beginning at either 0 or 9-h of IVM. To generate the 9-h DO group, COCs were first cultured intact for 9-h and then denuded. In the second experiment, specific OSFs, recombinant bone morphogenetic protein-15 (BMP-15) and growth differentiation factor 9 (GDF-9), were prepared as partially purified supernatants of transfected 293H cells, and used as 10% v/v supplements in Bovine VitroMat. Treatments were: (1) control (no supplement), (2) BMP-15, (3) GDF-9, (4) BMP-15 and GDF-9, and (5) untransfected 293H control. Following maturation, in vitro production of embryos was performed using the Bovine Vitro system (Cook Australia) and blastocysts were examined on Day 8 for development. Developmental data were arcsine-transformed and analyzed by ANOVA, followed by Tukey's test. Cell numbers were analyzed by ANOVA. Co-culturing intact COCs with DOs from 0 or 9 h did not affect cleavage rate, but increased (P < 0.001) the proportion of cleaved embryos that reached the blastocyst stage post-insemination (50.6 � 1.9 and 61.3 � 1.9%, respectively), compared to COCs cultured alone (40.7 � 1.4%). Therefore, paracrine factors secreted by DOs increased the developmental competence of oocytes matured as COCs. OSFs also improved embryo quality, as co-culture of COCs with DOs (0 or 9 h) significantly increased total cell (156.1 � 1.3 and 159.1 � 1.3, respectively) and trophectoderm (105.7 � 1.3 and 109.8 � 0.4, respectively) numbers, compared to control COCs (total = 148 � 1.2, trophectoderm = 98.2 � 0.8, P < 0.001). BMP-15 alone or with GDF-9 also significantly (P < 0.001) increased the proportion of oocytes that reached the blastocyst stage post insemination (57.5 � 2.4% and 55.1 � 4.5%, respectively), compared to control (41.0 � 0.9%) and 293H-treated (27.1 � 3.1%) COCs. GDF-9 also increased blastocyst yield (49.5 � 3.9%) but not significantly. These results are the first to demonstrate that OSFs, and particularly BMP-15 and GDF-9, directly affect bovine oocyte developmental competence. These results have far-reaching implications for improving the efficiency of IVM in domestic species and human infertility treatment, and support the role of OSF production by oocytes as a diagnostic marker for developmental competence.


2012 ◽  
Vol 24 (1) ◽  
pp. 210
Author(s):  
L. D. Spate ◽  
B. K. Redel ◽  
K. M. Whitworth ◽  
W. G. Spollen ◽  
S. M. Blake ◽  
...  

In contrast to oocytes matured in vitro, porcine embryos that result from in vivo maturation and fertilization have a high developmental competence and readily make the transition from oocyte to blastocyst. This observation led us to investigate the transcript profile differences between in vivo- and in vitro-matured porcine oocytes. For the in vivo-matured group, oviducts of 3 gilts of similar genetic background were flushed 2 days after detection of standing oestrus. MII oocytes were collected in pools of 10 and snap frozen in liquid nitrogen for RNA isolation. The in vitro-matured oocytes were obtained by euthanizing 3 gilts, again with a similar genetic background and recovering the ovaries. Follicles (2 to 8 mm in size) were aspirated and oocytes with multiple layers of cumulus cells and uniform cytoplasm were placed in M-199 supplemented with LH, FSH and epidermal growth factor for 42 h. Upon maturation, cumulus cells were stripped and the healthy MII oocytes were collected in pools of 10 and snap frozen. Total RNA was extracted from 3 pools of 10 oocytes for both treatments using an All prep DNA/RNA micro isolation kit (Qiagen, Valencia, CA, USA). Complementary DNA was synthesized using oligo (dT′) primed reverse transcriptase with superscript III (Invitrogen, Carlsbad, CA, USA). Second-strand cDNA was synthesized using DNA polymerase I and sequenced using Illumina Genome Analyzer II. All reads were aligned to a custom-built porcine transcriptome. There were over 18 million reads in the 2 maturation groups that tiled to the 34 433-member transcriptome: 1317 transcripts were detected with a P ≤ 0.1 (Students t-test), a minimum of 7 reads in at least 1 of the treatments and ≥2-fold difference. Real-time PCR was used on selected transcripts. Comparative CT Method was used on an IQ real-time PCR system with the Bio–Rad SYBR green mix. Statistical differences were determined using the Proc general linear model procedure of SAS (SAS Institute Inc., Cary, NC) and means separated with a l.s.d. (P ≤ 0.05). The misrepresented transcripts from the sequencing data were also characterized using the functional annotation tool DAVID. Twelve pathways were overrepresented in the in vitro-matured oocytes (the top 4 are pathways to cancer, spliceosome, cell cycle and ubiquitin-mediated proteolysis). Eight pathways were underrepresented in the in vitro-matured oocytes (the top 4 are cytoskeleton regulation, T-cell receptor signaling pathway, ubiquitin-mediated proteolysis and cell cycle). Eight transcripts were selected for real-time PCR. ZP2 was higher in the in vitro-matured oocytes as determined by both sequencing and real time. ATG4, HSP90, UBAP2 and SOX4 were not different, regardless of assay. SLC7A3, MRPS36 and PDHX2 were not different based on sequencing, but based on real-time MRPS36 and PDHX2, were higher in the in vivo group and SLC7A3 was higher in the in vitro group. In conclusion, there is an abundance of misregulated transcripts and altered pathways in in vitro-matured oocytes. This dataset is a tool that may provide clues to improve the in vitro maturation process so that in vitro-matured oocytes will be more like their in vivo-matured counterparts, thus improving developmental competence. Funded by Food for the 21st Century.


2008 ◽  
Vol 20 (1) ◽  
pp. 82
Author(s):  
M. Paczkowski ◽  
C. Bidwell ◽  
D. Spurlock ◽  
J. Waddell ◽  
R. L. Krisher

The in vitro culture environment significantly impacts nuclear maturation, fertilization, embryonic development, and epigenetic competence; however, our knowledge of the effects of in vitro maturation on oocyte developmental competence, and specifically cytoplasmic maturation, is limited. The objective of this experiment was to identify alterations in the transcriptome of oocytes matured in vitro compared to those matured in vivo that correlate to developmental competence. Immature oocytes were collected from Day 26 and 7-8-week-old B6D2F1 mice 48 h post-pregnant mare serum gonadotropin (PMSG) administration and matured for 16 h in Gmat supplemented with 0.5 mm citric acid, 0.5 mm cysteamine, 100 ng mL–1 epidermal growth factor (EGF), 0.05% insulin-transferrin-selenium (ITS; v/v), 0.01% recombumin (v/v) and 2 mg mL–1 fetuin. In vivo-matured oocytes from females of the same ages were collected from the oviducts 62 h post-PMSG and 14 h post-hCG and mating to vasectomized males. In vivo- and in vitro-matured oocytes were identified visually by the presence of the first polar body. Mature oocytes were pooled into three groups of 150 oocytes per treatment and lysed; poly A+ RNA was extracted. Samples were processed through two cycles of linear amplification and hybridized to the GeneChip� Mouse Genome 430 2.0 Array (Affymetrix, Inc., Santa Clara, CA, USA), with three arrays per treatment. Microarray data were sorted and filtered to include genes that were classified as having two present calls per treatment. The data were then normalized to the chip median and analyzed using a one-way analysis of variance; the level of significance was calculated at P < 0.01. In total, 2.17% (482/22170) and 1.61% (358/22170) of genes were differentially expressed between in vitro- and in vivo-matured oocytes in Day 26 and 7–8-week-old mice, respectively. However, 72.82% (351/482) and 67.87% (243/358) of differentially expressed genes had increased abundance in the in vitro- and in vivo-matured oocytes, respectively. Transcripts involved in gene expression, cellular growth and proliferation, and cellular development were increased in in vivo-matured oocytes from both age groups compared to those matured in vitro. Cell death was one of the higher ranking functional groups increased in the 7–8-week-old in vitro-matured oocytes compared to the 7–8-week-old in vivo-matured oocytes. Specific genes altered by in vitro maturation conditions in Day 26 oocytes were DNA methyltransferase 1 (>7-fold increase in vivo), caspase 8 (>4-fold increase in vivo), and eukaryotic translation initiation factor 1B (>4-fold increase in vivo). DNA methyltransferase 1 and ubiquitin-conjugating enzyme E2T were significantly increased in in vivo-matured 7–8-week-old oocytes (>3-fold and >5-fold, respectively). These results indicate that gene expression is altered in oocytes matured in vitro compared to those matured in vivo. Based on the functional annotations of genes differentially expressed, dysregulation of gene expression in the oocyte resulting in altered DNA methylation and an up-regulation in cell death pathways are potential developmental mechanisms influenced by in vitro culture conditions that correlate to reduced embryonic developmental potential.


2010 ◽  
Vol 22 (1) ◽  
pp. 260
Author(s):  
M. Bertoldo ◽  
P. K. Holyoake ◽  
G. Evans ◽  
C. G. Grupen

Effective in vitro maturation (IVM) is essential for successful in vitro embryo production. The morphology of the cumulus investment before and after IVM may be a useful noninvasive indicator of oocyte quality. In pigs, oocyte developmental competence is reduced during the summer months. The aim of this study was to determine whether the morphology of cumulus-oocyte complexes (COC) before and after IVM are associated with oocyte quality, using COC collected from small and large follicles in summer and winter as models of poor and good oocyte quality. Ovaries were collected from sows slaughtered 4 days after weaning. The COC recovered from small (3-4 mm) and large (5-8 mm) antral follicles were morphologically graded and parthenogenetically activated following IVM during winter (n = 1419; 10 replicates) and summer (n = 2803; 10 replicates). Grade 1 and 2 COC had >2 layers of compact cumulus cells and a homogenous cytoplasm. Grade 3 COC were either partially or fully denuded, had a heterogeneous cytoplasm, or were vacuolated or dark in color. Grade 4 COC had expanded cumulus cells. Cumulus expansion was also assessed subsequent to IVM. The COC recorded as having a cumulus expansion index (CEI) of 1 had the poorest expansion with no detectable response to IVM, whereas those with a CEI of 4 had the greatest amount of expansion, including that of the corona radiata. Data were analyzed using a generalized linear mixed model in GenStat® (release 10, VSN International, Hemel Hempstead, UK). There was an effect of follicle size for Grade 1 COC, with COC from large follicles in both seasons yielding better quality COC (P < 0.05). The proportion of COC in Grade 2 was higher in small follicles during winter compared with large follicles, but there were no differences between follicle sizes during summer (P < 0.05). The proportion of COC with CEI 1 was highest in COC from small follicles during summer (P < 0.05). The proportion of COC from large follicles with CEI 2 was higher during summer compared with winter (P < 0.05). There were no seasonal or follicle size effects on COC with CEI 3 or 4 (P > 0.05). The proportion of oocytes that developed to blastocysts was greater in winter than in summer (39.06% ± 5.67 v. 22.27% ± 4.01; P < 0.05). Oocytes derived from large follicles had a greater ability to form blastocysts compared with those from small follicles (37.13% ± 5.65 v. 23.32% ± 4.56; P < 0.06). Morphological assessment of cumulus cells before and after IVM may be a useful tool to evaluate the effects of follicle size on oocyte developmental competence. However, the results of the present study indicate that cumulus cell morphology is not a good indicator of the effect of season on oocyte developmental competence.


2007 ◽  
Vol 19 (1) ◽  
pp. 286
Author(s):  
C. G. Grupen ◽  
T. S. Hussein ◽  
S. J. Schulz ◽  
D. T. Armstrong

Supplementing medium with follicular fluid (FF) during in vitro maturation (IVM) enhances the developmental competence of porcine oocytes, indicating that factors present in FF are beneficial to cytoplasmic maturation. Previous findings suggest that porcine FF contains high levels of superoxide dismutase activity and exerts a beneficial effect on cytoplasmic maturation by protecting oocytes from oxidative stress (Tatemoto et al. 2004 Biol. Reprod. 71, 1150–1157). Since oxidative stress is a potent inducer of apoptosis, the aim of the present study was to examine the temporal effects of FF during IVM on cumulus cell apoptosis and oocyte developmental competence. Ovaries of prepubertal pigs were collected from a local abattoir and antral follicles, 3 to 7 mm in diameter, were aspirated. Cumulus–oocyte complexes (COCs) with at least 3 uniform layers of compact cumulus cells (CCs) were recovered, washed, and transferred to maturation medium (MM) with or without 25% FF. At 22 h of IVM, COCs from each group were washed and transferred to fresh MM with or without 25% FF, forming 4 groups: -FF/-FF, -FF/+FF, +FF/-FF, and +FF/+FF. Cohorts of COCs were TUNEL stained at 22 and 44 h of IVM using the In Situ Cell Death Detection kit (Roche Diagnostics, Castle Hill, NSW, Australia) according to the manufacturer&apos;s instructions, and apoptotic CCs were visualized using confocal microscopy. Oocytes denuded at 44 h, that had a polar body, were treated with ionomycin and 6-dimethylaminopurine to induce parthenogenetic development, and were cultured for 7 days in NCSU-23 medium at 38.5&deg;C in 5&percnt; O2, 5&percnt; CO2, and 90&percnt; N2. Data were subjected to ANOVA and Tukey&apos;s post-hoc test. At 22 h of IVM, the presence of FF reduced the proportion of apoptotic CCs in COCs (2.1&percnt; vs. 4.6&percnt;). COCs matured with FF from 22 to 44 h of IVM had much lower proportions of apoptotic CCs (&plus;FF/&plus;FF: 0.9&percnt;; &minus;FF/&plus;FF: 2.6&percnt;) compared with those matured without FF (&plus;FF/&minus;FF: 10.3&percnt;; &minus;FF/&minus;FF: 17.8&percnt;). The rate of maturation to the metaphase-II stage was greater when oocytes were matured with FF from 0 to 22 h of IVM (&minus;FF/&minus;FF: 68.6&percnt;; &minus;FF/&plus;FF: 72.8&percnt;; &plus;FF/&minus;FF: 89.2&percnt;; &plus;FF/&plus;FF: 86.2&percnt;). Maturation without FF for the entire IVM interval reduced the proportion of activated oocytes that formed blastocysts compared with the other groups (&minus;FF/&minus;FF: 25.1&percnt;; &minus;FF/&plus;FF: 44.6&percnt;; &plus;FF/&minus;FF: 46.6&percnt;; &plus;FF/&plus;FF: 47.3&percnt;). Despite a 4-fold difference in the proportion of apoptotic CCs between COCs of the &plus;FF/&minus;FF and &minus;FF/&plus;FF groups, exposure to FF for the first or second half of IVM was as beneficial to oocyte developmental competence as exposure to FF for the entire IVM interval. This suggests that the protective effect of FF in reducing oxidative stress on oocytes during IVM is distinct from the effect on oocyte developmental competence.


2017 ◽  
Vol 29 (1) ◽  
pp. 202 ◽  
Author(s):  
A. Lange-Consiglio ◽  
C. Perrini ◽  
P. Esposti ◽  
F. Cremonesi

The in vitro maturation of canine oocyte is problematic because it is difficult to reproduce the oviducal microenvironment where the in vivo maturation occurs. Because cells are able to communicate with each other by paracrine action, oviducal cells could be in vitro cultivated to obtain the conditioned medium (CM) consisting of soluble factors and microvesicles (MV), which represent a carrier for nonsoluble molecules including microRNA. The aim of the present work was to investigate the effect of the addition of CM or MV, secreted by oviducal cells, to the canine in vitro maturation medium. To generate CM, cells from oviducts of 3 animals in late oestrus were cultured for 5 days at 38.5°C in a humidified atmosphere of 5% CO2. Supernatants were collected, pooled, centrifuged at 2500 × g, and stored at −80°C. Microvesicles were obtained by ultracentrifugation of CM at 100,000 × g for 1 h at 4°C and measured for concentration and size by a Nanosight instrument. Ovaries were obtained from 50 healthy domestic bitches (1–4 years old) of different breeds that underwent ovariectomy regardless of the oestrous cycle. Cumulus-oocyte complexes were released by slicing the ovarian cortex with a scalpel blade, and only Grade 1 cumulus-oocyte complexes (darkly granulated cytoplasm and surrounded by 3 or more compact cumulus cell layers) 110 to 120 µm in diameter were selected for culture. Maturation was performed at 38.5°C in a humidified atmosphere of 5% CO2 and 5% of O2 in bi-phasic systems: 24 h in SOF with 5.0 μg mL−1 of LH followed by 48 h in SOF supplemented with 10% of oestrous bitch serum and 10% CM or 50, 75, 100, or 150 × 106 MV mL−1 labelled with PKH-26. Control was the same medium without CM or MV. Oocytes were observed under a fluorescent microscope to detect metaphase II (MII), by Hoechst staining, and the incorporation of MV. Statistical analysis was performed by chi-square test. Results show that canine oviducal cells secreted MV of 234 ± 23 nm in size, underling that these MV fall within the shedding vesicles category. The incorporation of labelled MV occurred at first in cumulus cells, at 48 h of maturation, and then, at 72 h, in oocyte cytoplasm. These MV had a positive effect on maturation rate (MII) at the concentration of 75 and 100 × 106 MV mL−1 compared with CM and control (20.34 and 21.82 v. 9.09 and 3.95%, respectively). The concentration of 150 × 106 MV mL−1 provided only 9.26% of MII. To understand the role of MV, we assessed the expression of 3 microRNA (miRNA-30b, miR-375, and miR-503) that are involved in some key pathways (WNT, MAPK, ERbB, and TGFβ) regulating follicular development and meiotic resumption. The lower rate of MII with the higher concentration of MV is possibly due to the high level of miR-375, which recent literature shows to suppress the TGFβ pathway, leading to impaired oocyte maturation. In conclusion, the oviducal MV, or specific microRNA, are involved in cellular trafficking during oocyte maturation, and their possible use in vitro could facilitate the exploitation of canine reproductive biotechnologies.


2018 ◽  
Vol 30 (1) ◽  
pp. 221
Author(s):  
T. Yamanouchi ◽  
H. Matsuda ◽  
M. Ohtake ◽  
Y. Ogata ◽  
Y. Aikawa ◽  
...  

It has been reported that in vitro- and in vivo-matured oocyte obtained from fully growth follicles have high developmental competence. Furthermore, the timing of cleavage in early embryo after IVF affect pregnancy success after embryo transfer. It is still unknown whether origin of oocyte affects the timing of cleavage. In this study, we examined the influence of oocyte origin on cleavage timing of early embryo after IVF. Japanese Black cows were used as donors. Oocytes derived from non-stimulation follicles (control: CON), fully grown follicles after super-stimulation treatment (SST) and follicles just before ovulation after ovulation-induction treatment (in vivo-matured oocyte: VIVO) were obtained by ovum pick-up (OPU). In the CON group, OPU was conducted on arbitrary days except oestrus. In SST group, dominant follicles were aspirated and a CIDR was inserted into the vagina on Day 0, and then FSH was injected twice a day from the evening of Day 1 to the morning of Day 5 with decreasing doses in total 20 AU. In the evening of Day 4, prostaglandin F2α (0.5 mg of cloprostenol) was administered. On Day 6, SST oocytes were collected after CIDR withdrawl. In the VIVO group, the treatment was carried out as SST until prostaglandin F2α administration, and then CIDR withdrawal and administration of gonadotropin-releasing hormone (GnRH, 0.2 mg of fertirelin acetate) performed on the evening of Day 4 and morning of Day 5, respectively. The VIVO oocytes were collected at 25 to 26 h after GnRH. The CON and SST oocytes were inseminated after 20 to 22 h of IVM, and VIVO oocytes were inseminated at 30 h after GnRH, with 3 × 106 sperm mL−1, respectively. After 6 h of IVF, presumptive zygotes were individually cultured for 168 h, using a well-of-the-well dish (Dai-Nippon-Print, Japan) and were observed by time-lapse cinematography (CCM-4MZS; Astec, Japan) to analyse the cleavage timing of embryos. Oxygen consumption (O2) was measured in blastocysts on 168 hpi with a scaning electrochemical microscopy system (HV-405SP; Hokuto Denko, Japan). Statistical analysis was carried out by Steel-Dwass test for the timing of cleavage and Tukey-Kramer test for O2. In CON (n = 15), SST (n = 25), and VIVO (n = 36), the time of first cleavage was 27.5, 29.1, and 26.1 hpi, that of second cleavage was 38.9, 40.3, and 36.0 hpi, and that of third cleavage was 48.5, 46.1, and 45.9 hpi, respectively. These cleavage times were shorter in VIVO than in CON and SST (P < 0.01). The time interval between first and second cleavage (2nd cell cycle) was shorter in VIVO (10.1; P < 0.01) than CON (11.4) and SST (11.2). The time interval between second and third (3rd cell cycle) were shorter (P < 0.01) in SST (9.4) than in VIVO (10.1), and in VIVO than in CON (10.2), respectively. Consumption of O2 was lower (P < 0.01) in CON (0.61 × 10−14 mol s−1) than in SST (0.94 × 10−14 mol s−1) and VIVO (0.94 × 10−14 mol s−1). These results suggest that the origin of oocyte influences the length of cell cycle and O2 consumption of blastocyst producted in vitro.


Sign in / Sign up

Export Citation Format

Share Document