scholarly journals 191IN VIVO AND IN VITRO DIFFERENTIATION OF EMBRYONIC STEM CELLS DERIVED FROM PARTHENOGENETIC EMBRYOS IN MICE

2004 ◽  
Vol 16 (2) ◽  
pp. 217
Author(s):  
T. Mitani ◽  
T. Teramura ◽  
T. Tada ◽  
Y. Hosoi ◽  
A. Iritani

Availability of embryonic stem (ES) cells opens the prospect for regenerative medicine. However, ES cells genetically mismatched to diseased individuals cause immunological rejection. In this study, we established ES cells from parthenogenetic embryos in mice and examined their pluripotency. Oocytes were collected from (C57BL/6xDBA)F1 mice (BDF1) by superovulation. Parthenogenetic diploid embryos were produced by activation treatment in 5mM SrCl2 in Ca2+-free KSOM medium for 2h, followed by cultivation in 5μgmL−1 cytochalasin B for 6h. The zonae pellucidae of embryos developed to the blastocyst stage in vitro were removed by a 5-min incubation in 0.5% pronase. Inner cell masses (ICMs) isolated immunosurgically were seeded on the feeder layers (mitomycin C-treated mouse embryonic fibroblasts) in DMEM supplemented with 15% Knock-Out Serum Replacement (Invitrogen), 2mM L-glutamine, non-essential amino acids, β-mercaptoethanol and 103UmL−1 of Leukemia inhibitory factor (LIF) at 37°C in a humidified atmosphere with 5% CO2 in air. The attached ICM cells were mechanically disaggregated and seeded on the fresh feeder layers. After several passages, parthenogenetic ES (PnES) cell lines were established. The efficacy of establishing PnES cell lines was 66% (37/56). To examine the characteristics of PnES cell lines, seven lines were subjected to histochemical and immunohistochemical analysis. All showed alkaline phosphatase activity and immunoreactivity to anti-SSEA-1 and anti-Oct4 antibodies. They maintained euploid sets of choromosomes at 29; 59%. PnES cells from two of the seven lines were injected into 59 host blastocysts obtained from ICR mice, resulting in 16 chimeric offspring (27%). In another experiment, injection of ICM cells and ES cells obtained from fertilized BDF1 blastocysts and ICM cells obtained from BDF1 parthenogenetic blastocysts also produced chimeric offspring (35%, 7/20; 46%, 6/13; and 53%, 10/19, respectively). However, no chimeric mouse with germline transmission was obtained from PnES cells. Injection of 1×107 of PnES cells into SCID mice formed teratocarcinomas. Immunohistochemical analysis showed cells positive for nestin (specific to neuroepitherial stem cells), Tu-J (class III β-tublin), NF-M (neurofilament), desmin (muscle), and albumin (hepatocytes), which indicated their differentiation potency to the cells derived from all three germ layers. Simple embryoid bodies produced from these cell lines were plated on tissue culture dishes under conditions for induction of differentiation. Immunohistochemistry and RT-PCR analysis showed their differentiation into neurons (NF-M, nestin), cardiomyocytes and hepato-like cells (albumin, α-fetoprotein). Our results indicate that PnES cells are pluripotent similar to the ES cells from fertilized embryos except for germline transmission and should be tested in cell replacement animal models.

Blood ◽  
1996 ◽  
Vol 87 (7) ◽  
pp. 2740-2749 ◽  
Author(s):  
CD Helgason ◽  
G Sauvageau ◽  
HJ Lawrence ◽  
C Largman ◽  
RK Humphries

Little is known about the molecular mechanisms controlling primitive hematopoietic stem cells, especially during embryogenesis. Homeobox genes encode a family of transcription factors that have gained increasing attention as master regulators of developmental processes and recently have been implicated in the differentiation and proliferation of hematopoietic cells. Several Hox homeobox genes are now known to be differentially expressed in various subpopulations of human hematopoietic cells and one such gene, HOXB4, has recently been shown to positively determine the proliferative potential of primitive murine bone marrow cells, including cells with long-term repopulating ability. To determine if this gene might influence hematopoiesis at the earliest stages of development, embryonic stem (ES) cells were genetically modified by retroviral gene transfer to overexpress HOXB4 and the effect on their in vitro differentiation was examined. HOXB4 overexpression significantly increased the number of progenitors of mixed erythroid/myeloid colonies and definitive, but not primitive, erythroid colonies derived from embryoid bodies (EBs) at various stages after induction of differentiation. There appeared to be no significant effect on the generation of granulocytic or monocytic progenitors, nor on the efficiency of EB formation or growth rate. Analysis of mRNA from EBs derived from HOXB4-transduced ES cells on different days of primary differentiation showed a significant increase in adult beta-globin expression, with no detectable effect on GATA-1 or embryonic globin (beta H-1). Thus, HOXB4 enhances the erythropoietic, and possibly more primitive, hematopoietic differentiative potential of ES cells. These results provide new evidence implicating Hox genes in the control of very early stages in the development of the hematopoietic system and highlight the utility of the ES model for gaining insights into the molecular genetic regulation of differentiation and proliferation events.


Reproduction ◽  
2008 ◽  
Vol 135 (6) ◽  
pp. 771-784 ◽  
Author(s):  
Fariborz Izadyar ◽  
Francis Pau ◽  
Joel Marh ◽  
Natalia Slepko ◽  
Tracy Wang ◽  
...  

Spermatogonial stem cells (SSCs) maintain spermatogenesis by self-renewal and generation of spermatogonia committed to differentiation. Under certain in vitro conditions, SSCs from both neonatal and adult mouse testis can reportedly generate multipotent germ cell (mGC) lines that have characteristics and differentiation potential similar to embryonic stem (ES) cells. However, mGCs generated in different laboratories showed different germ cell characteristics, i.e., some retain their SSC properties and some have lost them completely. This raises an important question: whether mGC lines have been generated from different subpopulations in the mouse testes. To unambiguously identify and track germ line stem cells, we utilized a transgenic mouse model expressing green fluorescence protein under the control of a germ cell-specific Pou5f1 (Oct4) promoter. We found two distinct populations among the germ line stem cells with regard to their expression of transcription factor Pou5f1 and c-Kit receptor. Only the POU5F1+/c-Kit+ subset of mouse germ line stem cells, when isolated from either neonatal or adult testes and cultured in a complex mixture of growth factors, generates cell lines that express pluripotent ES markers, i.e., Pou5f1, Nanog, Sox2, Rex1, Dppa5, SSEA-1, and alkaline phosphatase, exhibit high telomerase activity, and differentiate into multiple lineages, including beating cardiomyocytes, neural cells, and chondrocytes. These data clearly show the existence of two distinct populations within germ line stem cells: one destined to become SSC and the other with the ability to generate multipotent cell lines with some pluripotent characteristics. These findings raise interesting questions about the relativity of pluripotency and the plasticity of germ line stem cells.


2006 ◽  
Vol 18 (2) ◽  
pp. 210 ◽  
Author(s):  
M. A. Serrano ◽  
M. C. Gómez ◽  
M. Lopez ◽  
C. L. Dumas ◽  
K. E. Smith ◽  
...  

Interspecific nuclear transfer has been successfully demonstrated in nondomestic cats (Gomez et al. 2004 Cloning Stem Cells 6, 247); however, the efficiency remains low and may be attributable to nuclear reprogramming errors. Embryonic stem cells (ESC) may complete nuclear reprogramming more efficiently than somatic cells and, therefore, are potentially useful for increasing cloning success (Jaenisch et al. 2002 Cloning Stem Cells 4, 389). The objectives of this study were to: (1) compare efficiency of immunosurgery vs. mechanical separation for isolating the inner cell mass (ICM) of in vitro-derived cat blastocysts; and (2) determine the influence of mouse (MEF: CF-1) and cat (CEF) embryonic fibroblast feeder layers on ICM attachment and growth of ES-like cells. After ICMs were isolated from in vitro-derived blastocysts (n = 142) by immunosurgery or mechanically, they were plated either on mitotically inactivated CEF (40 �L/mL Mitomycin-C; 5 h) or MEF (30 �L/mL Mitomycin-C; 2.5 h). Cells were cultured in DMEM-F12, 1 mM L-Glutamine, 0.1 mM 2-mercaptoethanol, 1.25% nonessential amino acids, 15% knock-out replacement serum, 5% fetal bovine serum, 40 ng/mL leukemia inhibitory factor, 5 ng/mL basic fibroblast growth factor, 100 IU penicillin, 100 �g/mL streptomycin, and 25 �L/mL amphotericin-B in a humidified atmosphere of 5% CO2 in air at 38�C. Our results indicated that ICM isolation and attachment were not affected by either the method of isolation (immunosurgery: 75.8 � 6.9% vs. mechanical: 89.5 � 6.4%) or the feeders (MEF: 74.6 � 6.7% vs. CEF: 90.7 � 6.6%). However, the incidence of ES-like cell colony formation was significantly affected by the feeder layer (CEF: 55.4 � 7.2% vs. MEF: 12.7 � 7.2%; P < 0.001). A total of 32 ES-like cell lines were derived on CEF (n = 26) and MEF (n = 6), of which 50% were alkaline phosphatase (AP)-positive. One ES-like cell line derived on MEF spontaneously differentiated into myocardiocytes after 14 days in culture. Three ES-like cell lines derived on CEF were immunostained for ESC-markers Oct-4, SSEA-1, and SSEA-4, and for AP. Positive results for all markers were observed in a few colonies of each line, with colonies from one cell line appearing on Day 23 and remaining in culture for 102 days (12 passages). Colonies from the other two cell lines appeared on Day 17 and remained in culture for 78 days (9 passages). Colonies derived on MEF appeared on average at 17.9 days and remained in culture an additional 15 to 61 days without further characterization. The present results describe the first isolation of cat ES-like cells. We have demonstrated an important species-specific relationship between feeder layers and the derivation of cat ESCs. Further studies are in progress to improve culture conditions for the derivation and expansion of stable cat ESC lines.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4787-4787
Author(s):  
Marion Brenot ◽  
Annelise Bennaceur-Griscelli ◽  
Marc Peschanski ◽  
Maria Teresa Mitjavila-Garcia

Abstract Human embryonic stem cells (hES) isolated from the inner cell mass of a blastocyst have the ability to self renew indefinitely while maintaining their pluripotency to differentiate into multiple cell lineages. Therefore, hES represent an important source of cells for perspective cell therapies and serve as an essential tool for fundamental research, specifically for understanding pathophysiological mechanisms of human diseases for the development of novel pharmacological drugs. The generation of hematopoietic stem cells from hES may serve as an alternative source of cells for hematopoietic reconstitution following bone marrow transplantation and an interesting approach to understand early stages of hematopoietic development which are difficult to study in human embryos. Using two different methods, we have differentiated three hES cell lines (SA01, H1 and H9) into hematopoietic cells by generating embryoid bodies and co-culturing on the murine Op9 cell line. In both experimental approaches, we obtain cells expressing CD34 and when cultured in hematopoietic conditions, SA01 and H1 cell lines differentiate into various hematopoietic lineages as demonstrated by BFU-E, CFU-GM and CFU-GEMM colony formation, whereas H9 have almost exclusively granulo-macrophage differentiation. Cells composing these hematopoietic colonies express CD45, CD11b, CD31, CD41 and CD235 and staining with May Grundwald-Giemsa demonstrate neutrophil and erythrocyte morphology. These results demonstrate the capacity of hES to differentiate into mature hematopoietic cells in vitro. Nevertheless, there exist some quantitative and qualitative differences about hematopoietic differentiation between the hES cell lines used. However, we still have to evaluate their capacity to reconstitute hematopoiesis in vivo in an immune deficient mouse model. We will also be interested in developing in vitro methods to expand these hematopoietic precursor cells derived from hES which may be used as a viable source for future cell therapy.


2007 ◽  
Vol 19 (1) ◽  
pp. 230 ◽  
Author(s):  
Y.-W. Ou ◽  
K.-H. Lee ◽  
L.-R. Chen ◽  
P.-C. Tang ◽  
H.-F. Guu ◽  
...  

Embryonic stem (ES) cells are pluripotent cells from the inner cell mass (ICM) of the blastocyst. They are capable of differentiating to various cell types, such as neural cells, cardiocytes, hepatic cells, and germ cells. The aim of this study was to establish rabbit ES cell lines as an animal model for human diseases. Blastocysts were collected from New Zealand White rabbits during Days 4 to 5 after breeding. After removal of the mucin coat and the zona pellucida by pronase, the embryos were directly cultured in ES cell medium on mitomycin C-treated mouse embryonic fibroblast (MEF) or STO feeder layers. In Experiment 1, the efficiencies of 2 different feeder layers, MEF and STO, in generating rabbit ES cell lines were compared. Six blastocysts were used for each STO and MEF feeder group. The primary ICM colonies were formed in 67% (4/6) of the cultures on the STO and 83% (5/6) on the MEF. Sixty percent of those primary colonies (3/5) were successfully grown into ES-like cell lines in the MEF feeder group. However, no cell lines were established on the STO feeder. In Experiment 2, whole blastocysts or ICMs isolated by immunosurgery were cultured to establish ES cell lines. A total of 21 blastocysts were recovered from 2 does. Eighteen whole blastocysts and 3 isolated ICMs were cultured on the MEF feeders. Twelve (67%) of the cultured whole blastocysts formed primary ICM colonies, of which 5 (42%) of the cultures continuously propagated and formed ES-like cell lines. In the immunosurgical group, 2 of the 3 isolated ICMs formed primary colonies but only 1 ES-like cell line was established. A total of 9 ES-like cell lines maintained morphological undifferentiation after 14 passages and expressed alkaline phosphatase activity. Seven of the 9 ES-like cells expressed Oct-4 and the stage-specific embryonic antigen-4 (SSEA-4) as detected by immunocytochemical staining. Two cell lines were further induced to differentiate into embryoid bodies in suspension culture. Another 3 cell lines were injected into SCID mice and one of them formed a teratoma. The competence of generating chimeric rabbits and the teratogenicity of the established ES-like cell lines are under evaluation. In conclusion, rabbit ES-like cells were efficiently generated and whole-blastocyst culturing on the MEF feeder appeared to be a preferred method for the isolation and maintenance of rabbit ES-like cell lines.


Reproduction ◽  
2006 ◽  
Vol 132 (1) ◽  
pp. 59-66 ◽  
Author(s):  
S Tielens ◽  
B Verhasselt ◽  
J Liu ◽  
M Dhont ◽  
J Van Der Elst ◽  
...  

Embryonic stem (ES) cells are the source of all embryonic germ layer tissues. Oct-4 is essential for their pluripotency. Sincein vitroculture may influence Oct-4 expression, we investigated to what extent blastocysts culturedin vitrofrom the zygote stage are capable of expressing Oct-4 and generating ES cell lines. We comparedin vivowithin vitroderived blastocysts from B6D2 mice with regard to Oct-4 expression in inner cell mass (ICM) outgrowths and blastocysts. ES cells were characterized by immunostaining for alkaline phosphatase (ALP), stage-specific embryonic antigen-1 (SSEA-1) and Oct-4. Embryoid bodies were made to evaluate the ES cells’ differentiation potential. ICM outgrowths were immunostained for Oct-4 after 6 days in culture. A quantitative real-time PCR assay was performed on individual blastocysts. Of thein vitroderived blastocysts, 17% gave rise to ES cells vs 38% of thein vivoblastocysts. Six-day old outgrowths fromin vivodeveloped blastocysts expressed Oct-4 in 55% of the cases vs 31% of thein vitroderived blastocysts. The amount of Oct-4 mRNA was significantly higher for freshly collectedin vivoblastocysts compared toin vitrocultured blastocysts.In vitrocultured mouse blastocysts retain the capacity to express Oct-4 and to generate ES cells, be it to a lower level thanin vivoblastocysts.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Khodadad Khodadadi ◽  
Huseyin Sumer ◽  
Maryam Pashaiasl ◽  
Susan Lim ◽  
Mark Williamson ◽  
...  

Despite tremendous efforts on isolation of pluripotent equine embryonic stem (ES) cells, to date there are few reports about successful isolation of ESCs and no report ofin vivodifferentiation of this important companion species. We report the induction of pluripotency in adult equine fibroblasts via retroviral transduction with three transcription factors usingOCT4, SOX2, andKLF4in the absence of c-MYC. The cell lines were maintained beyond 27 passages (more than 11 months) and characterized. The equine iPS (EiPS) cells stained positive for alkaline phosphatase by histochemical staining and expressed OCT4, NANOG, SSEA1, and SSEA4. Gene expression analysis of the cells showed the expression ofOCT4, SOX2 NANOG, andSTAT3. The cell lines retained a euploid chromosome count of 64 after long-term culture cryopreservation. The EiPS demonstrated differentiation capacity for the three embryonic germ layers bothin vitroby embryoid bodies (EBs) formation andin vivoby teratoma formation. In conclusion, we report the derivation of iPS cells from equine adult fibroblasts and long-term maintenance using either of the three reprogramming factors.


Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Ming Li ◽  
Yong-Hai Li ◽  
Yi Hou ◽  
Xiao-Fang Sun ◽  
Qingyuan Sun ◽  
...  

The present study was designed to examine whether in vitro produced porcine embryos can be used to establish an embryonic stem (ES) cell line. Porcine embryos were produced by in vitro maturation and in vitro fertilization. Embryos at the 4-cell to blastocyst stages were cultured in an ES medium containing 16% fetal bovine serum with mouse embryonic fibroblasts as a feeder layer. It was found that ES-like colonies were derived only from blastocysts. When these ES-like colonies were separated in 0.25% trypsin–0.02% EDTA solution and cultured again, ES-like colonies were further observed in the subsequent culture until the fourth passage. The cells from ES-like colonies showed positive alkaline phosphatase activity. Some cells from the colonies differentiated into several types of cells in vitro when they were cultured in the medium without feeder layers and leukemin inhibitory factor. Embryoid bodies were also formed when the cells were cultured in a suspension status. These results indicate that porcine ES-like cells can be derived from in vitro produced porcine blastocysts and these ES-like cells are pluripotent. The culture system used in the present study is useful to isolate and culture ES cells from in vitro produced porcine embryos.


2002 ◽  
Vol 11 (7) ◽  
pp. 631-635 ◽  
Author(s):  
Tatsuyuki Takada ◽  
Yutaka Suzuki ◽  
Yasushi Kondo ◽  
Nae Kadota ◽  
Kinji Kobayashi ◽  
...  

The major limitation of nonhuman primate (NHP) embryonic stem (ES) cell research is inefficient genetic modification and limited knowledge of differentiation mechanisms. A genetically modified NHP-ES cell with biomarkers, such as green fluorescent protein (GFP), that allow noninvasive monitoring of transgenic cells, is a useful tool to study cell differentiation control during preimplantation and fetal development, which also plays a crucial role in the development of cell transplantation medicine. Here we report the establishment of transgenic NHP-ES cell lines that express GFP without jeopardizing their pluripotency, which was confirmed by in vitro and in vivo differentiation. These GFP-expressing ES cells reproducibly differentiated into embryoid bodies, neural cells, and cardiac myocytes. They formed teratoma composed of tissues derived from the three embryonic germ layers when transplanted into severe combined immunodeficient disease (SCID) mice. GFP expression was maintained in these differentiated cells, suggesting that these cells were useful for cell transplantation experiments. Furthermore, we showed that these ES cells have the ability to form chimeric blastocysts by introducing into the early preimplantation stage NHP embryo.


2017 ◽  
Vol 4 (S) ◽  
pp. 147
Author(s):  
Ho Thi-Kim Ngan ◽  
Nguyen Van Thuan ◽  
Hong-Thuy Bui

Parthenogenesis is a process in which zygotes are produced without sperm presence. Due to lack of paternal genes, parthenogenetic embryos cannot develop to full-term; however, these embryos show a great potential to generate histocompatible stem cells (parthenogenetic embryonic stem – pES cells) for transplantation. In this research, parthenogenetic activation in the mouse was carried out using strontium chloride (SrCl2) combined with cytochalasin B (CB). The rate of embryo development, blastocyst quality and expression of acetylation of histone H4 lysine 12 (H4K12Ac) were investigated, while parthenogenetic blastocysts were used to establish pES cells. The results showed that rate of in vitro blastulation of parthenogenetic embryos was lower than that of fertilized ones (45.1% vs 98.0%, respectively). In addition, blastocysts developed from parthenogenetic embryos also expressed lower quality, which was demonstrated by lower total cell number. Moreover, H4K12Ac expression significantly decreased in the inner cell mass (ICM) of parthenogenetic blastocysts compared to fertilized ones, indicating a possible reason for lower blastocyst quality. Following embryo collection and activation, two ES cell lines – fertilized (fES) and pES cell lines have been successfully established and maintained long term in vitro. To sum up, differences in blastocyst quality and H4K12Ac expression in ICM cells of blastocyst may contribute to aberrant developmental and embryonic stem cell formation in parthenogenetic embryos.


Sign in / Sign up

Export Citation Format

Share Document