retroviral transduction
Recently Published Documents


TOTAL DOCUMENTS

379
(FIVE YEARS 30)

H-INDEX

51
(FIVE YEARS 2)

2021 ◽  
Vol 22 (24) ◽  
pp. 13326
Author(s):  
Anastasia I. Palamarchuk ◽  
Nadezhda A. Alekseeva ◽  
Maria A. Streltsova ◽  
Maria O. Ustiuzhanina ◽  
Polina A. Kobyzeva ◽  
...  

Nowadays, the use of genetically modified NK cells is a promising strategy for cancer immunotherapy. The additional insertion of genes capable of inducing cell suicide allows for the timely elimination of the modified NK cells. Different subsets of the heterogenic NK cell population may differ in proliferative potential, in susceptibility to genetic viral transduction, and to the subsequent induction of cell death. The CD57–NKG2C+ NK cells are of special interest as potential candidates for therapeutic usage due to their high proliferative potential and certain features of adaptive NK cells. In this study, CD57– NK cell subsets differing in KIR2DL2/3 and NKG2C expression were transduced with the iCasp9 suicide gene. The highest transduction efficacy was observed in the KIR2DL2/3+NKG2C+ NK cell subset, which demonstrated an increased proliferative potential with prolonged cultivation. The increased transduction efficiency of the cell cultures was associated with the higher expression level of the HLA-DR activation marker. Among the iCasp9-transduced subsets, KIR2DL2/3+ cells had the weakest response to the apoptosis induction by the chemical inductor of dimerization (CID). Thus, KIR2DL2/3+NKG2C+ NK cells showed an increased susceptibility to the iCasp9 retroviral transduction, which was associated with higher proliferative potential and activation status. However, the complete elimination of these cells with CID is impeded.


2021 ◽  
Vol 22 (24) ◽  
pp. 13194
Author(s):  
Waldemar Wagner ◽  
Katarzyna Sobierajska ◽  
Katarzyna Dominika Kania ◽  
Edyta Paradowska ◽  
Wojciech Michał Ciszewski

Recently, we have shown the molecular basis for lactate sensing by cervical epithelial cells resulting in enhanced DNA repair processes through DNA-PKcs regulation. Interestingly, DNA-PKcs is indispensable for proper retroviral DNA integration in the cell host genome. According to recent findings, the mucosal epithelium can be efficiently transduced by retroviruses and play a pivotal role in regulating viral release by cervical epithelial cells. This study examined the effects of lactate on lentiviral transduction in cervical cancer cells (HeLa, CaSki, and C33A) and model glioma cell lines (DNA-PKcs proficient and deficient). Our study showed that L- and D-lactate enhanced DNA-PKcs presence in nuclear compartments by between 38 and 63%, which corresponded with decreased lentiviral transduction rates by between 15 and 36%. Changes in DNA-PKcs expression or its inhibition with NU7441 also greatly affected lentiviral transduction efficacy. The stimulation of cells with either HCA1 agonist 3,5-DHBA or HDAC inhibitor sodium butyrate mimicked, in part, the effects of L-lactate. The inhibition of lactate flux by BAY-8002 enhanced DNA-PKcs nuclear localization which translated into diminished lentiviral transduction efficacy. Our study suggests that L- and D-lactate present in the uterine cervix may play a role in the mitigation of viral integration in cervical epithelium and, thus, restrict the viral oncogenic and/or cytopathic potential.


2021 ◽  
Vol 22 (23) ◽  
pp. 13117
Author(s):  
Hyunsoo Kim ◽  
Noriko Takegahara ◽  
Yongwon Choi

Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup of the cadherin superfamily. Although the cell-intrinsic role of Pcdh7 in osteoclast differentiation has been demonstrated, the molecular mechanisms of Pcdh7 regulating osteoclast differentiation remain to be determined. Here, we demonstrate that Pcdh7 contributes to osteoclast differentiation by regulating small GTPases, RhoA and Rac1, through its SET oncoprotein binding domain. Pcdh7 is associated with SET along with RhoA and Rac1 during osteoclast differentiation. Pcdh7-deficient (Pcdh7−/−) cells showed abolished RANKL-induced RhoA and Rac1 activation, and impaired osteoclast differentiation. Impaired osteoclast differentiation in Pcdh7−/− cells was restored by retroviral transduction of full-length Pcdh7 but not by a Pcdh7 mutant that lacks SET binding domain. The direct crosslink of the Pcdh7 intracellular region induced the activation of RhoA and Rac1, which was not observed when Pcdh7 lacks the SET binding domain. Additionally, retroviral transduction of the constitutively active form of RhoA and Rac1 completely restored the impaired osteoclast differentiation in Pcdh7−/− cells. Collectively, these results demonstrate that Pcdh7 controls osteoclast differentiation by regulating RhoA and Rac1 activation through the SET binding domain.


2021 ◽  
Vol 22 (23) ◽  
pp. 12937
Author(s):  
Olga Troitskaya ◽  
Diana Novak ◽  
Anna Nushtaeva ◽  
Maria Savinkova ◽  
Mikhail Varlamov ◽  
...  

Multicellular spheroids with 3D cell–cell interactions are a useful model to simulate the growth conditions of cancer. There is evidence that in tumor spheroids, the expression of various essential molecules is changed compared to the adherent form of cell cultures. These changes include growth factor receptors and ABC transporters and result in the enhanced invasiveness of the cells and drug resistance. It is known that breast adenocarcinoma MCF7 cells can spontaneously form 3D spheroids and such spheroids are characterized by high expression of EGFR/HER2, while the natural phenotype of MCF7 cells is EGFRlow/HER2low. Therefore, it was interesting to reveal if high epidermal growth factor receptor (EGFR) expression is sufficient for the conversion of adherent MCF7 to spheroids. In this study, an MCF7 cell line with high expression of EGFR was engineered using the retroviral transduction method. These MCF7-EGFR cells assembled in spheroids very quickly and grew predominantly as a 3D suspension culture with no special plates, scaffolds, growth supplements, or exogenous matrixes. These spheroids were characterized by a rounded shape with a well-defined external border and 100 µM median diameter. The sphere-forming ability of MCF7-EGFR cells was up to 5 times stronger than in MCF7wt cells. Thus, high EGFR expression was the initiation factor of conversion of adherent MCF7wt cells to spheroids. MCF7-EGFR spheroids were enriched by the cells with a cancer stem cell (CSC) phenotype CD24−/low/CD44− in comparison with parental MCF7wt cells and MCF7-EGFR adhesive cells. We suppose that these properties of MCF7-EGFR spheroids originate from the typical features of parental MCF7 cells. We showed the decreasing of HER3 receptors in MCF7-EGFR spheroids compared to that in MCFwt and in adherent MCF7-EGFR cells, and the same decrease was observed in the MCF7wt spheroids growing under the growth factors stimulation. To summarize, the expression of EGFR transgene in MCF7 cells stimulates rapid spheroids formation; these spheroids are enriched by CSC-like CD24−/CD44− cells, they partly lose HER3 receptors, and are characterized by a lower potency in drug resistance pomp activation compared to MCF7wt. These MCF7-EGFR spheroids are a useful cancer model for the development of anticancer drugs, including EGFR-targeted therapeutics.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1153-1153
Author(s):  
Koji Jimbo ◽  
Shuhei Koide ◽  
Takahiro Ito ◽  
Arinobu Tojo ◽  
Katsuhiro Sasaki ◽  
...  

Abstract Ubiquitination is a post-translational modification that plays important roles in the regulation of various cellular processes. The linear ubiquitin chain assembly complex (LUBAC) is the only E3 ubiquitin ligase, which can specifically generate linear ubiquitin chains. LUBAC is composed of three subunits: catalytic Hoip (Rnf31), Hoil-1l (RBCK1), and Sharpin. LUBAC regulates canonical NF-κB signaling pathway and apoptosis. Several studies have shown that LUBAC is required for fetal hematopoiesis and tumorigenesis in several solid cancers, but the role of Hoip, which is the catalytic component of the LUBAC, in adult hematopoiesis and myeloid leukemia is unclear. To address whether Hoip is required for adult hematopoiesis, we used tamoxifen induced Hoip deleted mice (Hoip fl/fl; Rosa26-CreERT). Deletion of Hoip reduced the numbers of almost all cell fractions in bone marrow and peripheral blood, except for long-term hematopoietic stem cell (LT-HSC) fraction (CD34 - Flk2 - Lineage - c-Kit + Sca-1 +: LSK). Deletion of Hoip treated with tamoxifen markedly impaired colony formation of LT-HSCs in vitro. Among competitive transplantation assay using bone marrow cells from Hoip fl/fl; Rosa26-CreERT mice, deletion of Hoip treated with tamoxifen following stable reconstitution 8 weeks after transplantation led to a significant reduction of Hoip-deficient chimerism compared to control in vivo (Figure A). Deletion of Hoip induced apoptosis in bone marrow cells and increased the frequency of CD34 - LSK cells in S/G2/M phase of the cell cycle. Collectively, these data indicated that Hoip is required for adult hematopoiesis. To evaluate the consequences of Hoip deletion in myeloid leukemia propagation and maintenance, we utilized aggressive murine myeloid leukemia models driven by retroviral transduction of oncogenes: MLL-AF9 and NRAS G12V-driven acute myeloid leukemia (AML) and BCR-ABL and NUP98-HOXA9-driven blast crisis of chronic myelogenous leukemia (CML-BC) models. Deletion of Hoip in established leukemia cells treated with tamoxifen markedly impaired colony formation of leukemia cells in vitro and led to a significantly longer survival with reduced disease burden in bone marrow and spleen in vivo in both of leukemic models (Figure B,C). Deletion of Hoip also induced apoptosis in leukemia stem cells (LSCs: c-Kit + Lineage - cells) (Figure D) and increased the frequency of LSCs in S-phase of the cell cycle. Furthermore, we evaluated the contribution of HOIP to human myeloid leukemia. Knockdown of HOIP by small hairpin RNA using lentivirus in several myeloid leukemia cell lines (THP-1, SKM-1, and K562) and primary patient-derived AML cells exhibited reduced numbers of colony forming cells in vitro, and increased apoptosis. LUBAC inhibitor gliotoxin impaired the growth of murine and human leukemia cells. These results indicate that Hoip is essential for propagation and maintenance in murine and human myeloid leukemia. Because LUBAC regulates canonical NF-κB signaling pathway, we evaluated protein levels of p65 phosphorylation on Ser536 (p-p65) and IκBα in leukemia cells by flow cytometric analysis. Reduction in p-p65 and inhibition of IκBα degradation were observed in Hoip-deficient leukemia cells (Figure E), indicating that Hoip plays an important role in regulation of NF-κB signaling in myeloid leukemia. Since Hoip is the central component of LUBAC and the only catalytically active subunit of E3 ubiquitin ligase, we examined the importance of each domain of Hoip for myeloid leukemia propagation using Hoip mutant isoforms. Loss of colony-forming ability of Hoip-deficient AML cells could not be rescued by retroviral transduction of the Hoip mutants with deletion of UBA domain (which is required for interaction with the other LUBAC subunits) and with deletion of RBR domain and with mutation in C879A (which lack ligase activity) (Figure F), indicating that LUBAC ligase activity and interaction with the other LUBAC subunits are critical for leukemia propagation. Thus, our data demonstrated that Hoip is essential for adult hematopoiesis and myeloid leukemia. Given that patients with myeloid leukemia have shown increased activity of NF-κB signaling, inhibition of LUBAC ligase activity could serve as a promising strategy for treating myeloid leukemia. Figure 1 Figure 1. Disclosures Jimbo: Japan Society for the Promotion of Science: Research Funding. Ito: Japan Society for the Promotion of Science: Research Funding; Institute for Frontier Life and Medical Sciences, Kyoto University: Research Funding. Iwama: Nissan Chemical Corporation: Research Funding. Nannya: Otsuka Pharmaceutical Co., Ltd.: Consultancy, Speakers Bureau; Astellas: Speakers Bureau. Konuma: Japan Society for the Promotion of Science: Research Funding; The Japanese Society of Hematology: Research Funding; SGH Foundation: Research Funding; Institute for Frontier Life and Medical Sciences, Kyoto University: Research Funding.


2021 ◽  
Vol 12 ◽  
Author(s):  
David W. Scott

Chimeric antigen receptor (CAR) transduced T cells have significantly improved cancer immunotherapy. Similarly, engineering regulatory T cells (Treg) with specific receptors to endow specificity and increase efficacy of Tregs holds great promise for therapy of a variety of adverse immune responses. In this review, we focus on our approaches using retroviral transduction of specific T-cell receptors, single chain variable fragments (scFv) or antigen in models of monogenic diseases, autoimmunity and allergy. The advantages of each of these for different targets diseases are discussed as well as their potential for clinical translation.


2021 ◽  
Vol 2 (3) ◽  
pp. 100719
Author(s):  
Ekaterina Eremenko ◽  
Zoe V. Taylor ◽  
Bishnu Khand ◽  
Shir Zaccai ◽  
Angel Porgador ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Snigdha Majumder ◽  
Isabelle Jugovic ◽  
Domenica Saul ◽  
Luisa Bell ◽  
Nadine Hundhausen ◽  
...  

Gene editing of primary T cells is a difficult task. However, it is important for research and especially for clinical T-cell transfers. CRISPR/Cas9 is the most powerful gene-editing technique. It has to be applied to cells by either retroviral transduction or electroporation of ribonucleoprotein complexes. Only the latter is possible with resting T cells. Here, we make use of Cas9 transgenic mice and demonstrate nucleofection of pre-stimulated and, importantly, of naive CD3+ T cells with guideRNA only. This proved to be rapid and efficient with no need of further selection. In the mixture of Cas9+CD3+ T cells, CD4+ and CD8+ conventional as well as regulatory T cells were targeted concurrently. IL-7 supported survival and naivety in vitro, but T cells were also transplantable immediately after nucleofection and elicited their function like unprocessed T cells. Accordingly, metabolic reprogramming reached normal levels within days. In a major mismatch model of GvHD, not only ablation of NFATc1 and/or NFATc2, but also of the NFAT-target gene IRF4 in naïve primary murine Cas9+CD3+ T cells by gRNA-only nucleofection ameliorated GvHD. However, pre-activated murine T cells could not achieve long-term protection from GvHD upon single NFATc1 or NFATc2 knockout. This emphasizes the necessity of gene-editing and transferring unstimulated human T cells during allogenic hematopoietic stem cell transplantation.


2021 ◽  
Vol 31 (17) ◽  
pp. 2009382
Author(s):  
Stefanie Sieste ◽  
Thomas Mack ◽  
Edina Lump ◽  
Manuel Hayn ◽  
Desiree Schütz ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 141
Author(s):  
Kevin Lenogue ◽  
Alexandre Walencik ◽  
Karine Laulagnier ◽  
Jean-Paul Molens ◽  
Houssem Benlalam ◽  
...  

Because dendritic cells are crucial to prime and expand antigen-specific CD8+ T-cells, several strategies are designed to use them in therapeutic vaccines against infectious diseases or cancer. In this context, off-the-shelf allogeneic dendritic cell-based platforms are more attractive than individualized autologous vaccines tailored to each patient. In the present study, a unique dendritic cell line (PDC*line) platform of plasmacytoid origin, already used to prime and expand antitumor immunity in melanoma patients, was improved thanks to retroviral engineering. We demonstrated that the clinical-grade PDC*line, transduced with genes encoding viral or tumoral whole proteins, efficiently processed and stably presented the transduced antigens in different human leukocyte antigen (HLA) class I contexts. Moreover, the use of polyepitope constructs allowed the presentation of immunogenic peptides and the expansion of specific cytotoxic effectors. We also demonstrated that the addition of the Lysosome-associated membrane protein-1 (LAMP-1) sequence greatly improved the presentation of some peptides. Lastly, thanks to transduction of new HLA molecules, the PDC platform can benefit many patients through the easy addition of matched HLA-I molecules. The demonstration of the effective retroviral transduction of PDC*line cells strengthens and broadens the scope of the PDC*line platform, which can be used in adoptive or active immunotherapy for the treatment of infectious diseases or cancer.


Sign in / Sign up

Export Citation Format

Share Document