scholarly journals 160 IN VIVO-CULTURE OF BOVINE EMBRYOS: TRANSFER OF SEMEN PRE-INCUBATED OOCYTES, ZYGOTES AND 4 TO 8 CELL STAGE EMBRYOS INTO THE BOVINE OVIDUCT

2005 ◽  
Vol 17 (2) ◽  
pp. 231
Author(s):  
V. Havlicek ◽  
F. Wetscher ◽  
T. Huber ◽  
M. Gilles ◽  
D. Tesfaye ◽  
...  

Oviduct as well as oocyte and embryo development are subject to developmental changes which have crucial effects on the application of in vivo culture. The present study aimed at optimizing in vivo culture of IVP bovine embryos at different developmental stages in the bovine oviduct. Cumulus oocyte complexes (COC) were collected from slaughterhouse ovaries, matured in vitro for 22 h and assigned to four groups. In groups I and II, oocytes were pre-incubated for 3 to 4 h with 5 × 106 sperm/mL, and then immediately transferred to recipients, which had just completed ovulation (group I), or kept in vitro for a further 12 to 18 h and transferred to Day 1 synchronized recipients (group II). In groups III and IV, COC were subjected to standard IVF/IVC; then embryos were either transferred at the 4- to 8-cell stage on Day 3 into the oviducts of Day 3-synchronized recipients (group III) or kept in vitro for a further 4 to 5 days (group IV). Thirty-four 18- to 30-month-old temporary recipients were synchronized using a standard Ovsynch protocol. COC and embryos were transferred and re-collected by transvaginal endoscopy. COC or embryos were loaded into a 180° curved glass capillary, which was inserted via the infundibulum 5 to 8 cm deep into the ampulla ipsilateral to the CL. On recipient Day 7, a 90° curved metal canula served for tubal flushing prior to conventional uterine embryo flushing. Sixty mL of PBS containing 1% fetal calf serum were rinsed through the oviduct into the uterus and a further 400 mL of medium were finally used for flushing of the uterine horn and collected via an embryo filter. Embryo development was evaluated directly after flushing (Day 7) and on Day 8. For statistical analysis (ANOVA), the blastocyst rates (Days 7 and 8) in group III were related to COC corrected by the collection rate. In group I, 575 COC were transferred to 11 recipients and 420 (73%) were re-collected as oocytes or embryos. The blastocyst yields on Day 7 and Day 8 were 23% (97) and 25% (104), respectively. In group II, the transfer of 489 presumptive zygotes into 13 heifers resulted in only 175 re-collected (36%), of which 15% developed into blastocysts (Day 7: 26; Day 8: 27). Ten heifers (group III) served for in vivo culture of 643 embryos at the 4- to 8-cell stage. On Day 7, 568 (88%) embryos were flushed and 171 (30%) reached the blastocyst stage. A further 24 h culture in vitro finally resulted in 244 (42%) blastocysts. The complete in vitro production system delivered 13% (63/477) blastocysts on Day 7 and 34% (161/477) blastocysts on Day 8. The collection rates (P < 0.001) and the blastocyst rates on Day 7 (P < 0.05) and Day 8 (P < 0.001) differed significantly in all groups. The present data demonstrate that the developmental stage of transferred complexes has an influence on embryo recovery as well as an embryo development. This work was supported by Austrian BMBWK and BMLFUW (#1227).

2006 ◽  
Vol 18 (2) ◽  
pp. 191
Author(s):  
A. Kaya ◽  
H. Sagirkaya ◽  
M. Misirlioglu ◽  
A. Gumen ◽  
E. Memili ◽  
...  

Adequate regulatory proteins, growth factors, and hormones in in vitro embryo culture systems are important for improving the quality of embryos to a level similar to that in vivo conditions. The objective of this study was to define the effects of leptin, insulin-like growth factor-1 (IGF-1), and their combination on embryonic development, apoptosis, and expression profiles of a panel of developmentally important genes. Presumptive zygotes (16–18 h post-insemination) were randomly assigned and cultured in control (no supplementation), 5 ng/mL leptin (Group I), 100 ng/mL IGF-1 (Group II), and 5 ng/mL leptin and 100 ng/mL IGF-1 (Group III), all supplemented with 10% FCS on Day 4. On Day 8, the embryos reaching blastocyst stage were randomly either fixed for determination of DNA-fragmented nuclei by using terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) or frozen for real-time relative quantitative RT-PCR analysis. The RT-PCR was performed to assess gene transcripts of glucose transporter-1 (Glut-1), heat shock protein 70.1 (Hsp70.1), interferon tau (IF-tau), insulin-like growth factor II receptor (IGF-IIr), desmosomal glycoprotein desmocollin III (DcIII), and DNA methyltransferase 3a (Dnmt3a). A total of 349, 322, 347, and 360 zygotes were used for the control group and Groups I, II, and III, respectively. Data were analyzed with a randomized complete block design and arcsine square root transformation of the dependent variables consisting of four treatments and six replicates. Cleavage rates were 79.5, 84.2, 87.3, and 82.4% for the control group and Groups I, II, and III, respectively, and only Group II was different from the control (P < 0.05). The percentages of embryos developed beyond the 8–16 cell stage were 44.2, 48.2, 49.0, and 50.7 for the control group and Groups I, II, and III, respectively, and Group III was different from the control (P < 0.05). Percentages of blastocyst development were 26.7, 29.6, 31.5, and 29.8, and the mean blastocyst cell numbers were 96.6, 98.6, 104.4, and 104.1 for the control group and Groups I, II, and III, respectively. The percentage of nuclei with fragmented DNA were 4.2, 3.3, 2.5, and 1.9 for the control group and Groups I, II, and III, respectively. Addition of IGF-1 and/or combination with leptin (Groups II and III) decreased the number of nuclei with fragmented DNA (P < 0.01) as compared to the control group. Although the expression of Glut1, DcIII, and Igf2r did not change among the groups, IF-tau and Dnmt3a were down-regulated in Group II. Hsp70 and IF-tau were up regulated in Group III. Results indicate that addition of IGF-I in culture media improved the cleavage rate; combination with leptin also improved the development rates to 8–16-cell-stage embryos, decreased the TUNEL-positive nuclei, and altered expression of some of the developmentally important genes.


2011 ◽  
Vol 23 (1) ◽  
pp. 173
Author(s):  
M. J. Sudano ◽  
D. M. Paschoal ◽  
T. S. Rascado ◽  
L. C. O. Magalhães ◽  
L. F. Crocomo ◽  
...  

Phenazine ethosulfate (PES) is a metabolic regulator that inhibits fatty acid synthesis and favours the pentose-phosphate pathway. Supplementation of fetal calf serum (FCS) during culture has been correlated with the reduction of quality of in vitro produced bovine embryos (IVPE). The aim of the present study was to evaluate embryo development and apoptosis in blastocysts after the supplementation of PES and FCS in culture medium of IVPE. Oocytes (N = 4320) were matured and fertilized in vitro (Day 0). The zygotes (Bos indicus) were cultured in SOFaa medium with 4 concentrations of FCS (0, 2.5, 5, and 10%) and with the use or not of 0.3 μM PES from Day 4 (after 96 h of embryo culture). Embryo development was evaluated after 7 days of culture. Apoptosis in blastocysts (N = 60–80) was accessed through TUNEL reaction. Embryos (Bos indicus) recovered from superstimulated cows were used as in vivo control (n = 15). Data were analysed by ANOVA followed by LSD using PROC GLIMMIX (SAS; SAS Institute Inc., Cary, NC, USA) means ± SEM. Increasing FCS concentration in the culture media did not change cleavage (86.7 ± 1.7, 82.3 ± 1.6, 86.3 ± 1.4, 87.0 ± 1.5, P > 0.05) and augmented blastocyst production (30.5 ± 2.5a, 41.8 ± 2.4b, 40.5 ± 2.6b, 47.2 ± 2.8b, P < 0.05), respectively, for 0, 2.5, 5, and 10%. Additionally, increasing FCS concentration increased apoptosis in blastocysts (13.8 ± 1.2b, 19.1 ± 1.8b, 20.7 ± 1.9bc, 28.4 ± 2.3c, P < 0.05, respectively, for 0, 2.5, 5, and 10%). The addition of PES from Day 4 in the culture medium did not affect (P > 0.05) cleavage (87.0 ± 1.3 and 84.4 ± 1.3), blastocyst production (42.0 ± 2.8 and 43.0 ± 2.0), and apoptosis in blastocysts (20.7 ± 2.0b and 18.9 ± 2.1b), respectively, for control and PES Day 4 groups. Independent of FCS withdrawal or PES addition to culture medium, the in vivo control group presented the lowest apoptosis rate (6.3 ± 1.1a). Therefore, increasing FCS concentration augmented embryo development and reduced blastocyst quality. However, the addition of 2.5% of FCS in the culture medium increased the embryo development without the reduction of blastocyst quality. Moreover, the PES supplementation from Day 4 did not affect embryo development and blastocyst quality. São Paulo Research Foundation – FAPESP.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Artur Wdowiak

The aim of this study was to investigate the activity of myoinositol, in a court of 217 PCOS women undergoing intracytoplasmic sperm injection (ICSI), on pregnancy rate, embryo development, estradiol, and progesterone concentration in blood serum, superoxide dismutase (SOD), and catalase (CAT) in follicular fluid. Concerning the court of patient, 112 (groups I and II) out of 217 were PCOS women, whereas group III consisted of healthy subjects (not PCOS). Group I patients were treated with 400 μg of folic acid per day for 3 months before ICSI, whereas group II patients received 4000 mg of myoinositol and 400 μg of folic acid per day for 3 months before ICSI. Group II revealed a shorter embryo/blastocyst development period between microinjection and 5-cell stage compared to group I. The difference in SOD concentration between groups I and II and between groups II and III was statistically significant. In group II, 34.62% of pregnancies were obtained, whereas in group I this number reached 20% (NS). Myoinositol increased embryo development dynamics and accelerated blastocyst stage reaching time; however, no effect was shown on clinical pregnancy. Furthermore, it restored SOD concentration, lowered in PCOS women, but did not exert any effect on CAT concentration.


2012 ◽  
Vol 7 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Sarabjeet Kaur ◽  
Pravin Kumar ◽  
Deo Kumar ◽  
M. D. Kharya ◽  
Nityanand Singh

Previous studies have reported an enhancement of central cholinergic signal cascade by shilajit. For the present study, it was hypothesized that parasympathomimetic effect of shilajit accounting for relaxation of rat corpus cavernosum may be one of the major mechanisms attributing to its traditional role as an aphrodisiac. To test this hypothesis, the acute peripheral effect of standard acetylcholine (ACh), shilajit, and their combination was evaluated on cardiorespiratory parameters such as mean arterial blood pressure (MABP), heart rate (HR), respiratory rate (RR), and neuromuscular transmission (NMT). Furthermore, in vitro effect of standard ACh, shilajit, and their combination was tested on the rat corpus cavernosum. Six groups were used for the in vivo study ( N = 5): Group I (control-saline), Group II (ACh), Group III (Sh), Group IV (Sh followed by ACh), Group V (Atropine followed by ACh), and Group VI (Atropine followed by Sh). The in vitro study included four groups: Group I (control-saline), Group II (ACh), Group III (Sh), and Group IV (Sh followed by ACh). The results of the in vivo study confirmed the peripheral parasympathomimetic effect of shilajit (400 µg/mL). The in vitro results revealed that shilajit (400 and 800 µg/mL) relaxed cavernous strips’ concentration dependently and enhanced ACh-mediated relaxations. The peripheral parasympathomimetic effects of shilajit were confirmed by blockade of shilajit-induced relaxations (in vitro) and shilajit-induced lowering of MABP and HR (in vivo) by atropine.


Zygote ◽  
2018 ◽  
Vol 26 (5) ◽  
pp. 430-434 ◽  
Author(s):  
Azita Faramarzi ◽  
Mohammad Ali Khalili ◽  
Sareh Ashourzadeh ◽  
Maria Grazia Palmerini

SummaryCurrently, rescue in vitro maturation (IVM) is not a routine method in assisted reproductive treatment (ART) programmes but is a promising procedure for ART to improve IVM. The aim of this study was to compare embryo morphokinetics of germinal vesicles (GV) with metaphase II (MII) oocytes from controlled ovarian hyperstimulation (COH) cycles by time-lapse photography monitoring (TLM). Morphokinetics of the same number of embryos derived from the in vivo (group I) and rescue of in vitro matured oocytes (group II) from 310 patients were analyzed and compared retrospectively. The time to form second PB extrusion (tPB2), time of pronuclei appearance (tPNa), time of pronuclei fading (tPNf) and time of two to eight discrete cells (t2–t8) were assessed. Abnormal cleavage patterns such as uneven blastomeres at the two-cell stage, cell fusion (Fu), trichotomous mitoses (TM), and the rates of embryo arrest were assessed. These data showed that tPB2, tPNa, tPNf, t2, t3 and t4 stages took place later in group II compared with group I (P<0.001, P=0.017, P<0.001, P<0.001, P<0.001, P<0.001, respectively). The rates of uneven blastomeres, Fu, TM, and embryo arrest were increased significantly in group II compared with group I (P=0.001, P<0.001, P=0.003, P<0.001, respectively). Based on the exact annotation of timing parameters and cleavage patterns, the present data agreed with the concept that rescue IVM of oocytes negatively influences embryo morphokinetics. Therefore, cautious use of embryos derived from rescue IVM of GV oocytes should be made.


1989 ◽  
Vol 1 (2) ◽  
pp. 127 ◽  
Author(s):  
D Sakkas ◽  
AO Trounson ◽  
I Kola

The cleavage rate and development of two-cell mouse embryos to the morulae stage in co-culture with mouse oviduct cells was studied in vitro and compared with those achieved in vivo. Embryos were cultured in Whittingham's T6 (T6), T6 supplemented with fetal calf serum (FCS) and in co-culture with either Dulbecco's Modified Eagles Medium supplemented with sodium lactate (DMEM + 1a) or a modification of T6 medium containing vitamins and amino acids (T6 + v + aa). Co-culture of oviductal cells with DMEM + la medium supported two-cell mouse embryo development to eight cells at a rate significantly better (P less than 0.001) than T6, but the rate of embryo development was not equivalent to that in vivo. DMEM + la alone was inadequate as an embryo culture medium. Co-cultures using T6 + v + aa with mouse oviductal cells were prepared from mice at days 1, 2 or 3 of pseudopregnancy. Day 2 and 3 co-cultures allowed two-cell embryos to develop at a rate comparable to that in vivo up to the mid eight-cell stage (68 h after hCG), but by 76 h after hCG embryos were retarded. Transfer to pseudopregnant recipients of embryos co-cultured with day 2 oviductal cells until 68 h after hCG resulted in a rate of fetal development equivalent to that of embryos grown in vivo. Our results show that co-culture of early cleavage-stage embryos with mouse oviductal cells allows embryos to retain cleavage rates and viability comparable to in vivo development.


1997 ◽  
Vol 36 (08) ◽  
pp. 259-264
Author(s):  
N. Topuzović

Summary Aim: The purpose of this study was to investigate the changes in blood activity during rest, exercise and recovery, and to assess its influence on left ventricular (LV) volume determination using the count-based method requiring blood sampling. Methods: Forty-four patients underwent rest-stress radionuclide ventriculography; Tc-99m-human serum albumin was used in 13 patients (Group I), red blood cells was labeled using Tc-99m in 17 patients (Group II) in vivo, and in 14 patients (Group III) by modified in vivo/in vitro method. LV volumes were determined by a count-based method using corrected count rate in blood samples obtained during rest, peak exercise and after recovery. Results: In group I at stress, the blood activity decreased by 12.6 ± 5.4%, p <0.05, as compared to the rest level, and increased by 25.1 ± 6.4%, p <0.001, and 12.8 ± 4.5%, p <0.05, above the resting level in group II and III, respectively. This had profound effects on LV volume determinations if only one rest blood aliquot was used: during exercise, the LV volumes significantly decreased by 22.1 ± 9.6%, p <0.05, in group I, whereas in groups II and III it was significantly overestimated by 32.1 ± 10.3%, p <0.001, and 10.7 ± 6.4%, p <0.05, respectively. The changes in blood activity between stress and recovery were not significantly different for any of the groups. Conclusion: The use of only a single blood sample as volume aliquot at rest in rest-stress studies leads to erroneous estimation of cardiac volumes due to significant changes in blood radioactivity during exercise and recovery.


2012 ◽  
Vol 17 (4) ◽  
pp. 1-7 ◽  
Author(s):  
Roberto Hideo Shimizu ◽  
Karlos Giovani Grando ◽  
Isabela Almeida Shimizu ◽  
Augusto Ricardo Andriguetto ◽  
Ana Cláudia Moreira Melo ◽  
...  

OBJECTIVE: This in vitro study was designed to evaluate the shear bond strength (SBS) of orthodontic metal brackets bonded by direct and indirect techniques. METHODS: Thirty healthy human maxillary premolar teeth were used. The teeth were divided into three groups of 10 teeth each: Group I - indirect bonding with SondhiTM Rapid-Set system (3M/Unitek), Group II - indirect bonding with TransbondTM XT adhesive system (3M/Unitek) and Group III - direct bonding with TransbondTM XT adhesive system (3M/Unitek). After bonding and obtaining the specimens for the study, the specimens were subjected to SBS testing in a universal testing machine (Emic, model DL-500). The Kolmogorov-Smirnov test was applied to ascertain that the data had a normal distribution and the Bartlett test to check whether there was homogeneity of variance. One-factor analysis of variance was performed and, subsequently, Tukey's test for paired means. A 5% significance level was adopted. RESULTS: The results of Group I were 67.6 (N) and 5.9 (MPa); Group II, 68.9 (N) and 6.1 (MPa) and Group III (control), 92.5 (N) and 8.1 (MPa). CONCLUSION: It can therefore be concluded that the means for Group III were significantly higher compared with Groups I and II in both Newton (N) and Megapascal (MPa) values. The means attained by the indirect bonding technique used in Groups I and II, however, exhibited no statistically significant differences.


2005 ◽  
Vol 17 (8) ◽  
pp. 751 ◽  
Author(s):  
Mona E. Pedersen ◽  
Øzen Banu Øzdas ◽  
Wenche Farstad ◽  
Aage Tverdal ◽  
Ingrid Olsaker

In this study the synthetic oviduct fluid (SOF) system with bovine oviduct epithelial cell (BOEC) co-culture is compared with an SOF system with common protein supplements. One thousand six hundred bovine embryos were cultured in SOF media supplemented with BOEC, fetal calf serum (FCS) and bovine serum albumin (BSA). Eight different culture groups were assigned according to the different supplementation factors. Developmental competence and the expression levels of five genes, namely glucose transporter-1 (Glut-1), heat shock protein 70 (HSP), connexin43 (Cx43), β-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), analysed as mRNA by using reverse transcription–polymerase chain reaction, were measured on bovine embryos cultured for 9 days. Gene expression of these in vitro-produced embryos was compared with the gene expression of in vivo-produced embryos. There was no significant difference found in embryo developmental competence between the Day 9 embryos in BOEC co-culture, FCS and BSA supplements in SOF media. However, differences in gene expression were observed. With respect to gene expression in in vivo and in vitro embryos, BOEC co-culture affected the same genes as did supplementation with FCS and BSA. HSP was the only gene that differed significantly between in vitro and in vivo embryos. When the different in vitro groups were compared, a significant difference between the BOEC co-culture and the FCS supplementation groups due to Glut-1 expression was observed.


2012 ◽  
Vol 50 (No. 4) ◽  
pp. 149-158 ◽  
Author(s):  
V. Havlicek ◽  
M. Lopatarova ◽  
S. Cech ◽  
R. Dolezel ◽  
T. Huber ◽  
...  

Routine access to the bovine oviduct for in vivo culture accomplishes various demands on embryo production for scientific as well as commercial purposes. The experiments conducted in the present study focused on the efficiency of recovery methods after temporary in vivo culture of bovine embryos in oviducts of the homologous species using transvaginal endoscopy (Experiment I) and on the quality assessment of recovered blastocysts (Experiment II). In Experiment I in vitro matured oocytes were fertilized, cultured for 1 to 3 days and transferred unilaterally into the ipsilateral oviducts of 54 heifers by the means of transvaginal endoscopy. After 4 to 6 days of in vivo culture embryos were re-collected either by non-surgical flushing of uterine horns (U-group) or by combined flushing of the oviducts and uterine horns (OU-group). In total the recovery rate was 38.4% (780/2029). After flushing at day seven, 106 blastocysts (blastocyst rate: 13.6% ) were found. The additional 24 h of in vitro culture (day eight) resulted in 153 blastocysts (blastocyst rate: 19.6% ). The recovery rate in the OU-group was twice as efficient as in the U-group (390/1358 vs. 390/671, P &lt; 0.01). The recovery rates among the different stages of transferred embryos did not differ significantly; likewise cross-effects among the stages and the recovery methods were non-significant. The recovery methods (P &lt; 0.001) and the interaction between the recovery methods and the stages of transferred embryos (P &lt; 0.01) had an influence on blastocyst yields on day seven (U-group 37/1358 vs. OU-group 69/671) and day eight (U-group 48/1358 vs. OU-group 105/671). In Experiment II embryo quality was assessed by the survival rate of blastocysts after freezing in ethylene glycol. Day seven embryos were produced in vitro (in vitro group D7) or by IVM/IVF followed by a combined culture procedure (2 to 3 days in vitro prior to 4&nbsp;to 5 days in vivo) (in vivo group D7) or after superovulation and collection at day seven (superovulation group). Embryos from in vitro group D7 re-expanded only for 6 h after thawing, embryos from in vivo group D7 and superovulation group were alive for 24 h and 72 h of culture, respectively. Only embryos derived by superovulation showed hatching activity. Blastocysts from the in vitro group D7 and the in vivo group D7 that were held in culture medium for additional 24 h (day eight) showed an analogous post-thawing culture behaviour. In conclusion, the results of the present study demonstrated that some embryos transferred for in vivo culture remain in the oviduct even at day seven. Hence, combined flushing of oviducts and uterine horns after in vivo culture in the bovine oviduct is necessary for effective embryo re-collection. The quality of recovered embryos after temporary in vivo culture assessed by cryotolerance was in-between those produced in vitro or recovered after superovulation.


Sign in / Sign up

Export Citation Format

Share Document