35 IN VITRO BOVINE EMBRYO DEVELOPMENT AFTER NUCLEAR TRANSFER BY HANDMADE CLONING USING A MODIFIED WOW CULTURE SYSTEM

2006 ◽  
Vol 18 (2) ◽  
pp. 126 ◽  
Author(s):  
C. Feltrin ◽  
F. Forell ◽  
L. dos Santos ◽  
J. L. Rodrigues

The effect of the microenvironment on embryo development during in vitro culture of zona-free embryos after nuclear transfer is still unclear. The aim of this experiment was to determine the effect of the dimensions of the well (WOW; Vajta et al. 2000 Mol. Reprod. Dev. 55, 256-264) culture system on the in vitro development of handmade cloned bovine embryos to the blastocyst stage. Appropriately ground steel needles were pressed slightly by hand to the bottom of the well of a polystyrene four-well dish (176740, Nunc, Life Technologies AS, Roskilde, Denmark). Embryos were produced by the handmade cloning (HMC) technique (Vajta et al. 2003 Biol. Reprod. 68, 571-578) with modifications, using primary cultures of skin fibroblast cells from an adult cow as nuclear donors. Cumulus-oocyte complexes were in vitro-matured in M-199 supplemented with 10% estrous cow serum (ECS), FSH, hCG, and estradiol (E2) for 17 h. After maturation, cumulus cells were removed by pipetting. Following zona pellucida removal in 0.5% protease (Sigma, Brazil), zona-free oocytes were incubated for 15 min in 5 mg/mL cytochalasin B (Sigma) and subsequently hand-bisected and screened for nuclear material under UV light after incubation in 10 mg/mL bisbenzimide (Hoechst 33342). Next, two enucleated halves and one donor cell were aggregated after a quick exposure to phytohemagglutinin (PHA) and subsequently fused by two electrical DC pulses of 1 kV/cm for 20 �s, in a BTX 453 chamber coupled to an ECM 2001 Electro Cell Manipulator System (BTX, Inc., San Diego, CA, USA), with additional exposure to brief pre- and post-fusion AC pulses of 15 V. Reconstructed embryos were chemically activated in 5 mM ionomycin (Sigma) for 5 min, followed by 2 mM 6-DMAP (Sigma) for 2.5 h. Finally, activated reconstructed cloned embryos were in vitro-cultured in one of two WOW culture systems (larger vs. smaller micro-wells) in 4-well plates containing 400 mL modified SOF medium supplemented with 10% ECS, under mineral oil, at 5% CO2, 5% O2 and 90% N2, and 39�C for 7 days. In Group 1 (large-size micro-well), embryos were cultured in individual cylindrical micro-wells with an inner diameter and depth of approximately 280 and 250 mm, respectively, whereas in Group 2 (small size micro-well), embryos were cultured in individual conical micro-wells with approximately 130 mm inner diameter and 150 mm depth. Data analysis was performed by the chi-square test. After four replicates, cleavage rates were significantly higher (P < 0.05) in Group 2 (51/63, 80.9%) than in Group 1 (43/67, 64.1%). Embryo development to the blastocyst stage was also greater (P < 0.05) in the small micro-wells (16/63, 25.3%) than in the large ones (8/67, 11.9%). In summary, these results show a significant increase in cleavage and blastocyst developmental rates in handmade cloned embryos cultured in a modified WOW system using individual small size micro-wells, suggesting that a small, tighter micro-well provides favorable in vitro conditions for embryo development.

2005 ◽  
Vol 17 (2) ◽  
pp. 219 ◽  
Author(s):  
C.E. Ferguson ◽  
T.R. Davidson ◽  
M.R.B. Mello ◽  
A.S. Lima ◽  
D.J. Kesler ◽  
...  

There has been much debate over a direct role for progesterone (P4) in early bovine embryo development. While previous attempts to supplement bovine embryos in vitro with P4 produced results that vary and are often contradictory, this may be a response of administering P4 at inappropriate times. Therefore, the objective of these experiments was to determine if P4 could exert a direct effect on developing IVF-derived bovine embryos when administered at an appropriate time of embryo development. In Exp. I, IVF-derived bovine 8-cell embryos were randomly allotted to treatments: (1) control, CR1aa medium (n = 168); (2) vehicle, CR1aa + ETOH (0.01%) (n = 170); and (3) P4, CR1aa + ETOH + P4 (20 ng/mL in 50-μL droplet) (n = 173). In Exp. II, IVF-derived bovine 8-cell embryos were randomly allotted to treatments: (1) control, CR1aa medium (n = 160); (2) vehicle, CR1aa + DMSO (0.01%) (n = 180); and (3) P4, CR1aa + DMSO (0.01%) + P4 (20 ng/mL in 50-μL droplet) (n = 170). All embryos were evaluated on Days 6 to 9 post-insemination and rates calculated from 8-cell embryos. In Exp. I, ETOH tended to have a detrimental effect with significantly fewer (P < 0.05) embryos (53%) developing to the blastocyst stage on Day 7 compared with the control (62%) and P4 (71%) groups. At Day 7, significantly more embryos cultured in P4 (71%) developed to the blastocyst stage compared with the control group (62%). P4 treatment significantly increased the number of Grade 1 blastocysts (25%) on Day 7 compared with vehicle (15%) and control (17%) groups. At the end of culture, there were also significantly more Day 9 hatched blastocysts in the P4 group (33%) compared with vehicle (22%) and control (21%) groups. Supplementing P4 in the culture medium increased the rate of development, resulting in significantly more blastocysts (8%) on Day 6 and hatched blastocysts (21%) on Day 8 compared with vehicle (3% and 12%) and control (0% and 8%) groups, respectively. In Exp. II, there were no significant differences between treatment groups for Day 7 blastocysts (control 54%, DMSO 61%, P4 57%) and Day 9 hatched blastocysts (control 46%, DMSO 51%, P4 46%). However, there were significantly more Grade 1 blastocysts in the P4 group (22% and 36%) on Days 6 and 8 compared with vehicle (11% and 23%) and control (13% and 23%) groups, respectively. The lack of improvement in Day 7 blastocysts and Day 9 hatched blastocysts rates leads to further uncertainty in understanding the P4 vehicle interactions. In conclusion, the results of these two experiments indicate that P4 can exert a direct effect on the developing IVF-derived bovine embryo; however, due to P4 vehicle interactions; other inert vehicles need to be explored to further evaluate the direct effects of P4 on the developing bovine embryo.


2008 ◽  
Vol 20 (1) ◽  
pp. 143
Author(s):  
F. N. T. Cooke ◽  
T. M. Rodina ◽  
P. J. Hansen ◽  
A. D. Ealy

Most of the current culture procedures used for bovine in vitro embryo production terminates at the blastocyst stage. Developing procedures for extending embryo lifespan beyond this phase will provide a valuable tool for understanding events that occur during the second week of pregnancy in cattle. The overall objective of the present studies was to identify culture conditions required to support bovine blastocyst development beyond its initial formation. In the first study, individual day 8 blastocysts (day 0 = day of IVF) were cultured until day 11 in 30 µL microdrops of Potassium Simplex Optimized Medium-Bovine Embryo 2 containing 0.1 mm non-essential amino acids or Tissue Culture Medium 199 (M199). Both media were supplemented with 5% [v/v] fetal bovine serum (FBS) and incubations were in an atmosphere of either 5 or 21% (v/v) oxygen. A medium by oxygen interaction (P = 0.007) occurred when assessing cell number on day 11. Blastocysts cultured in M199 and in a 5% O2 environment had greater (P < 0.002) cell numbers (536 � 49) than blastocysts incubated in other conditions (339 � 28). Conditioned medium from blastocysts incubated in 21% O2 contained greater (P < 0.05) concentrations of bioactive interferon-tau (IFNT) than blastocysts incubated in 5% O2 regardless of medium type (70.5 � 28 v. 17.2 � 2.6 ng mL–1). In a follow-up study, blastocysts could remain morphologically viable through day 11 in M199 containing at least 2.5% FBS. To examine whether oxidative stress was responsible for the increase in IFNT production under 21% O2, blastocysts were incubated under a 5% O2 atmosphere in M199 containing 2.5% FBS and increasing concentrations of tert-butylhydroperoxide (tBH), a membrane-permeable oxidative agent. Addition of e3 nm tBH decreased cell numbers but did not increase IFNT concentrations in conditioned medium. To examine whether blastocysts could survive beyond day 11 in culture, day 11 blastocysts were transferred to 400 �L of M199 with 20% FBS under 5% oxygen and cultured from day 11 to 20–21 post-IVF. Half of the medium was replaced every 2–3 days. On day 13–14, 16.6 � 6.1% of blastocysts showed initial signs of degeneration. A portion of blastocysts (32.9 � 9.6%) began attaching to plates on days 13–15 and produced outgrowths that appeared viable on days 20–21. All of the non-attached blastocysts degenerated by day 17–18. No blastocyst elongation was detected. In conclusion, a culture system was developed that sustains blastocyst viability and IFNT production in vitro to day 11. Although this culture system allowed blastocyst survival until day 14, normal conceptus development (i.e. elongation/filamentation) was not achieved. Nonetheless, the culture system provides a useful tool for examining the initial stages of blastocyst development and IFNT production from individual bovine embryos.


2014 ◽  
Vol 26 (1) ◽  
pp. 128
Author(s):  
C. P. Buemo ◽  
A. Gambini ◽  
I. Hiriart ◽  
D. Salamone

Somatic cell nuclear transfer (SCNT) derived blastocysts have lower cell number than IVF-derived blastocysts and their in vivo counterparts. The aim of this study was to improve the blastocyst rates and quality of SCNT blastocysts by the aggregation of genetically identical free zona pellucida (ZP) porcine clones. Cumulus–oocyte complexes were recovered from slaughterhouse ovaries by follicular aspiration. Maturation was performed in TCM for 42 to 48 h at 39°C and 5% CO2. After denudation by treatment with hyaluronidase, mature oocytes were stripped of the ZP using a protease and then enucleated by micromanipulation; staining was performed with Hoechst 33342 to observe metaphase II. Ooplasms were placed in phytohemagglutinin to permit different membranes to adhere between each other; the ooplasm membrane was adhered to a porcine fetal fibroblast from an in vitro culture. Adhered membranes of the donor cell nucleus and enucleated oocyte cytoplasm were electrofused through the use of an electric pulse (80 V for 30 μs). All reconstituted embryos (RE) were electrically activated using an electroporator in activation medium (0.3 M mannitol, 1.0 mM CaCl2, 0.1 mM MgCl2, and 0.01% PVA) by a DC pulse of 1.2 kV cm–1 for 80 μs. Then, the oocytes were incubated in 2 mM 6-DMAP for 3 h. In vitro culture of free ZP embryos was achieved in a system of well of wells in 100 μL of medium, placing 3 activated oocytes per microwell (aggregation embryo), whereas the control group was cultivated with equal drops without microwells. Embryos were cultivated at 39°C in 5% O2, 5% CO2 for 7 days in SOF medium with a supplement of 10% fetal bovine serum on the fifth day. The RE were placed in microwells. Two experimental groups were used, control group (not added 1X) and 3 RE per microwell (3X). At Day 7, resulting blastocysts were classified according to their morphology and diameter to determine their quality and evaluate if the embryo aggregation improves it. Results demonstrated that aggregation improves in vitro embryo development rates until blastocyst stage and indicated that blastocysts rates calculated over total number of oocytes do not differ between groups (Table 1). Embryo aggregation improves cleavage per oocyte and cleavage per microwell rates, presenting statistical significant differences and increasing the probabilities of higher embryo development generation until the blastocyst stage with better quality and higher diameter. Table 1.Somatic cell nuclear transfer cloning and embryo aggregation


2011 ◽  
Vol 23 (1) ◽  
pp. 160
Author(s):  
E. Abele ◽  
H. Stinshoff ◽  
A. Hanstedt ◽  
S. Wilkening ◽  
S. Meinecke-Tillmann ◽  
...  

Several factors have been shown to alter the sex ratio of bovine embryos generated in vitro, i.e. the maturity of the oocyte at the time of insemination, the duration of sperm-oocyte co-incubation and the culture conditions after in vitro fertilization. It has been shown that the presence of glucose during in vitro culture reduced the development of female embryos to the blastocyst stage compared with controls cultured in the absence of glucose. The sex ratio of bovine embryos has also been linked with changes in the composition of the follicular fluid in which the oocyte undergoes growth and maturation, i.e. the intrafollicular testosterone concentration. However, no information is available regarding the effect of intrafollicular glucose concentration on the sex ratio of embryos after in vitro production (IVP). The purpose of this study was to determine whether different glucose concentrations in the follicular fluid at the time of cumulus–oocyte complex (COC) collection have an effect on the sex ratio of the resulting blastocysts after IVP. Ovaries from a local abattoir were transported to the laboratory within 2 h of slaughter. Follicles (3–8 mm) were individually dissected and the glucose concentration of each follicle was measured using a blood glucose monitoring system (Freestyle Freedom Lite, Abbott, Germany). Based on a glucose concentration, COC [low glucose: <1.1 mM (group 1) and high glucose: >1.1 mM (group 2)] were pooled in groups and used for blastocyst production employing standard protocols for IVP. Developmental rates were recorded at Day 3 (cleavage) and Day 7/8 (blastocyst stage). Total cell number of blastocysts was determined after Hoechst staining. Sex of the embryos was analysed via PCR using bovine X- and Y-chromosome specific primers. Developmental rates for COC stemming from follicles with different glucose concentrations did not show significant differences (P > 0.05) compared to each other [Cleavage rate: group 1: 81.8 ± 4.7% (93/117); group 2: 79.3 ± 4.9% (94/123); blastocyst rate: group 1: 35.6 ± 5.2% (38/117); group 2: 31.6 ± 5.2% (38/123)]. Total cell numbers were similar in embryos of both groups [Group 1: 117.7 ± 8.1 (n = 18); group 2: 117.2 ± 6.4 (n = 18)]. The overall sex ratio significantly differed (P < 0.05) from 1:1 in favour of females in both groups [Group 1: 85 v. 15% (n = 20); group 2: 63.6 v. 36.4% (n = 22)]. No significant difference (P > 0.05) in the overall sex ratio was detected in blastocysts produced under standard IVP conditions employed in the laboratory [without measurement of follicular glucose concentration, 55.0 v. 45.0%, (n = 20)]. In conclusion, under the conditions used in the present study, the intrafollicular glucose concentration from which the immature COC was collected affects the sex of the resulting embryo after IVP, favouring females. Further studies are needed to confirm these findings in living cows using the ovum pickup technique.


Reproduction ◽  
2009 ◽  
Vol 138 (3) ◽  
pp. 507-517 ◽  
Author(s):  
M Clemente ◽  
J de La Fuente ◽  
T Fair ◽  
A Al Naib ◽  
A Gutierrez-Adan ◽  
...  

The steroid hormone progesterone (P4) plays a key role in the reproductive events associated with pregnancy establishment and maintenance. High concentrations of circulating P4 in the immediate post-conception period have been associated with an advancement of conceptus elongation, an associated increase in interferon-τ production and higher pregnancy rates in cattle. Using in vitro and in vivo models and ∼8500 bovine oocytes across six experiments, the aim of this study was to establish the route through which P4 affects bovine embryo development in vitro and in vivo. mRNA for P4 receptors was present at all stages of embryo development raising the possibility of a direct effect of P4 on the embryo. Exposure to P4 in vitro in the absence or presence of oviduct epithelial cells did not affect the proportion of embryos developing to the blastocyst stage, blastocyst cell number or the relative abundance of selected transcripts in the blastocyst. Furthermore, exposure to P4 in vitro did not affect post-hatching elongation of the embryo following transfer to synchronized recipients and recovery on Day 14. By contrast, transfer of in vitro derived blastocysts to a uterine environment previously primed by elevated P4 resulted in a fourfold increase in conceptus length on Day 14. These data provide clear evidence to support the hypothesis that P4-induced changes in the uterine environment are responsible for the advancement in conceptus elongation reported previously in cattle and that, interestingly, the embryo does not need to be present during the period of high P4 in order to exhibit advanced elongation.


2011 ◽  
Vol 59 (1) ◽  
pp. 129-139 ◽  
Author(s):  
Santiago Varga ◽  
Carmen Diez ◽  
Lina Fernández ◽  
Jenny Álvarez ◽  
Adelino Katchicualula ◽  
...  

The optimum culture system for in vitro matured and fertilised oocytes still remains to be clarified. Culture media (CM) for mammalian embryos are routinely prepared fresh for use and preserved under refrigeration during one or two weeks. The purposes of this work were (1) to compare the efficiency of a synthetic oviduct fluid (SOF) with two different bovine serum albumin (BSA) concentrations (3 and 8 g/L) for the in vitro production of bovine blastocysts, (2) to test the effect of timing on adding fetal calf serum (FCS) to the SOF, and (3) to evaluate the effects on bovine embryo development of freezing and lyophilisation as procedures for preserving the SOF. Supplementation of SOF with 3 g/L BSA increased Day-7 blastocyst expansion rates (18.3 ± 1.6 vs. 14.4 ± 0.7; P < 0.05), although no differences in hatching rates were found. Addition of FCS to SOFaa (SOF with amino acids) medium supplemented with sodium citrate (SOFaaci) at 48 and at 72 h post-insemination (PI) allowed obtaining higher Day-6 embryo development rates than when FCS was added at 18 or 96 h PI (Day-6 morulae + blastocyst rate: 30.0 ± 1.1, 40.8 ± 1.1, 43.9 ± 2.3 and 39.3 ± 0.5 for FCS addition at 18, 48, 72 and 96 h, respectively). Hatching rates were significantly improved when serum was added at 72 h PI. Finally, both refrigeration and lyophilisation appeared as useful cryopreservation procedures for SOFaaci, although a significant loss of its ability to support embryo development, compared to the control fresh culture medium, was observed.


2004 ◽  
Vol 16 (2) ◽  
pp. 261
Author(s):  
Y.S. Park ◽  
S.H. Choi ◽  
H.D. Park ◽  
M.D. Byun

In vitro embryo development is strongly influenced by IVM conditions. Increased duration of IVM may cause aging of the oocytes, which has a harmful effect on the embryo development. Oocyte maturation depends upon the synthesis of several proteins that may play important roles in the cytoplasmic maturation. These experiments were conducted to determine the effect of IVM duration(18-h or 24-h) and medium exchange (at 18h) on embryo development, and to investigate the protein quantities in IVM medium. Korean Native Cow (KNC) ovaries were obtained from a local slaughterhouse, and cumulus-oocyte complexes (COCs) were aspirated from 2- to 8-mm follicles. Groups of 15 COCs were matured in 50-μL drops of TCM-199 supplemented with 10% fetal calf serum (FBS), 1μgmL−1 MFSH, 10μgmLLH and 1μgmL−1 Estradiol-17β for 18h or 24h. In vitro-matured oocytes were fertilized using frozen-thawed percoll separated spermatozoa (Day 0) in fer-TALP medium for 20h and cultured in CR1aa medium supplemented with 0.3% BSA (before Day 3) or 10% FBS (After Day 3). All types of cultures were carried out in an incubator at 39°C, 5% CO2 in air. The total protein quantity in IVM medium at 18h or 24h were compared by 2-dimensional gel electrophoresis using a 10–15% polyacrylamide gradient gels. Data from three replicates were analyzed by chi-square test. The proportions of oocytes reaching the blastocyst stage was significantly higher in 18h IVM group than 24h IVM group (Table 1). However, there was no difference detected in blastocyst rate between 18h IVM group and 18h medium exchange group. Total protein quantity was reduced between 18h and 24h in IVM medium. There were 299 protein spots identified in IVM medium;; there was an increase at 10 spots in the IVM medium analyzed at 18h and a decrease of 20 spots at 24h. This study suggests that duration of IVM affects subsequent embryo development. The total protein quantity was decreased between 18h and 24h in IVM medium. These proteins may be absorbed into the oocytes and reduce development to the blastocyst stage. However, this may be overcome by IVM medium exchange. Table 1 Effects of duration of IVM and medium exchange on embryo development of KNC oocytes


2012 ◽  
Vol 24 (1) ◽  
pp. 141
Author(s):  
C. M. O'Meara ◽  
T. Fair ◽  
P. Lonergan

Progesterone plays a key role in the reproductive events associated with pregnancy establishment and maintenance. High concentrations of circulating progesterone in the immediate post-conception period are associated with an advancement of conceptus elongation, an associated increase in interferon-tau production and higher pregnancy rates in cattle. Progesterone-induced changes in the uterine environment are thought to be responsible for the reported advancement in conceptus elongation; however, the function of the progesterone receptor in embryos is not known. Therefore, the aim of the current study was to examine the effect of adding a progesterone receptor antagonist (mifepristone, RU486) at various stages of early embryonic development and at varying concentrations to examine the effects on subsequent embryo development in vitro. Bovine zygotes (n = 2902), 2-cell (n = 1991) and 8-cell (n = 1244) embryos, derived by in vitro maturation and fertilization, were cultured in synthetic oviduct fluid medium in the absence or presence of RU486 at concentrations ranging from 0.0004 to 20 μg mL–1. Cleavage rate (of zygotes), 8-cell development rate (of 2-cell embryos) and development to the blastocyst stage (for all cell stages) were recorded at Day 2, 3 and 8 post-insemination (day of IVF = Day 0), respectively. Cultures of zygotes in the presence of RU486 at concentrations of 0.004 and 0.04 μg mL–1 resulted in a decline in cleavage rate (62.5 ± 2.55% and 48.8 ± 5.07% for respective treatments vs controls without RU486 81.9 ± 5.97%; P ≤ 0.05). These same concentrations resulted in a significant decline in blastocyst development on Day 8 (18.8 ± 1.82% and 17.4 ± 4.85% for respective treatments compared to controls 35.1 ± 4.89%; P ≤ 0.05). Cultures at concentrations of 0.4 μg mL–1 resulted in a 10-fold decrease in blastocyst development (3.3 ± 1.3%; P ≤ 0.05) and concentrations in excess of 10 μg mL–1 completely ablated blastocyst development (P ≤ 0.05). Cultures of 2-cell embryos with RU486 at concentrations below 8 μg mL–1 had no effect on 8-cell rate or blastocyst development. However, cultures with RU486 at 10 μg mL–1 resulted in a significant decline in the proportion reaching the 8-cell stage (59.1 ± 4.59% vs 38.1 ± 2.13% for control and treated, respectively) and developing to the blastocyst stage (32.8 ± 4.68% vs 17.8 ± 3.77% for control and treated, respectively; P ≤ 0.05). Cultures with RU486 at a concentration of 20 μg mL–1 resulted in a dramatic effect in 8-cell rate (16.3 ± 2.55%; P ≤ 0.05) and prevented blastocyst development. Similarly, cultures of 8-cell embryos with RU486 at concentrations at or below 10 μg mL–1 had no effect on blastocyst development. However, cultures at concentrations of 15 or 20 μg mL–1 resulted in no blastocyst development. In conclusion, addition of the progesterone and glucocorticoid receptor antagonist RU486 to culture media has a clear stage-specific and concentration-dependent effect on bovine embryo development, which is more pronounced at earlier developmental stages. Supported by Science Foundation Ireland (07/SRC/B1156).


Reproduction ◽  
2020 ◽  
Vol 160 (4) ◽  
pp. 579-589 ◽  
Author(s):  
Priscila Ramos-Ibeas ◽  
Ismael Lamas-Toranzo ◽  
Álvaro Martínez-Moro ◽  
Celia de Frutos ◽  
Alejandra C Quiroga ◽  
...  

Failures during conceptus elongation are a major cause of pregnancy losses in ungulates, exerting a relevant economic impact on farming. The developmental events occurring during this period are poorly understood, mainly because this process cannot be recapitulated in vitro. Previous studies have established an in vitro post-hatching development (PHD) system that supports bovine embryo development beyond the blastocyst stage, based on agarose gel tunnels and serum- and glucose-enriched medium. Unfortunately, under this system embryonic disc formation is not achieved and embryos show notorious signs of apoptosis and necrosis. The objective of this study has been to develop an in vitro system able to support embryonic disc formation. We first compared post-hatching development inside agarose tunnels or free-floating over an agarose-coated dish in serum- and glucose-enriched medium (PHD medium). Culture inside agarose tunnels shaped embryo morphology by physical constriction, but it restricted embryo growth and did not provide any significant advantage in terms of development of hypoblast and epiblast lineages. In contrast to PHD medium, a chemically defined and enriched medium (N2B27) supported complete hypoblast migration and epiblast survival in vitro, even in the absence of agarose coating. Cells expressing the pluripotency marker SOX2 were observed in ~56% of the embryos and ~25% developed embryonic disc-like structures formed by SOX2+ cells. In summary, here we provide a culture system that supports trophectoderm proliferation, hypoblast migration and epiblast survival after the blastocyst stage.


2021 ◽  
Vol 31 (2) ◽  
pp. 161-167
Author(s):  
Taisiia Yurchuk ◽  

Fertility preservation is among the priorities in reproductive medicine. However, the cancer patients and women with various functional ovarian disorders, wishing to preserve future reproductive potential may have some contraindications or no possibilities to cryopreserve mature oocytes and ovarian tissue. Therefore, the development of techniques for immature oocyte cryopreservation is considered an alternative strategy. Here, we have evaluated the survival, maturation, fertilization and embryo development rates of immature oocytes (Germinal vesicle (GV) stage – group 1) after cryopreservation and in vitro matured (IVM) ones (group 2) prior to cryopreservation, compared with in vivo matured metaphase-II (MII) oocytes (group 3). Survival rates were 97.6, 96.2 and 98.2 % for groups 1–3, respectively. The maturation rate of GV oocytes in group 1 was significantly lower than in group 2 and made 52.0 and 73.2%, respectively. The highest fertilization rate was revealed in group 3, and the lowest one was in group 1. The groups 1–3 showed the same tendency for further embryo development, i. e. the blastulation rates were 20.0, 38.5 and 56.9%, respectively. Thus, the survival rate of cryopreserved oocytes did not depend on their maturity rate. However, the IVM oocytes displayed lower fertilization and blastulation rates, than the in vivo matured ones. It was found that oocytes IVM should be performed prior to cryopreservation, because it ensured higher rates of maturation, fertilization and embryo development in vitro.


Sign in / Sign up

Export Citation Format

Share Document