120 SUPPLEMENTATION OF VASCULAR ENDOTHELIAL GROWTH FACTOR DURING IN VITRO MATURATION OF PORCINE IMMATURE CUMULUS - OOCYTE COMPLEXES AND SUBSEQUENT DEVELOPMENTAL COMPETENCE AFTER PARTHENOGENESIS AND SOMATIC CELL NUCLEAR TRANSFER

2011 ◽  
Vol 23 (1) ◽  
pp. 165 ◽  
Author(s):  
D. Biswas ◽  
Y.-B. Jeon ◽  
G.-H. Kim ◽  
E.-B. Jeung ◽  
S. H. Hyun

In the present study, pig cumulus–oocyte complexes were cultured in medium supplemented with different concentrations (0, 5, 50, and 500 ng mL–1) of vascular endothelial growth factor (VEGF), and then the maturation and intracellular glutathione (GSH) concentration of oocytes were examined. In addition, the development of oocytes matured with different concentrations of VEGF after parthenogenetic activation (PA) or somatic cell nuclear transfer (SCNT) was observed. Although the maturation rate of oocytes was not affected by VEGF concentrations (81.13 ± 2.61%, 83.93 ± 1.97%, 82.14 ± 4.03%, 75.24 ± 2.68%, respectively), the intracellular GSH concentrations of oocytes matured with 5 and 50 ng mL–1 VEGF were significantly higher (12.68 ± 0.08, 12.33 ± 0.53 pMol/oocyte, respectively) than those of oocytes matured with 0 or 500 ng mL–1 VEGF (10.19 ± 0.66, 10.54 ± 0.54 pMol/oocyte, respectively). The blastocyst formation rates after PA of oocytes matured with 5 and 50 ng mL–1 VEGF were significantly higher (58.99 ± 4.70% and 54.00 ± 1.09%, respectively) than that of oocytes matured with 0 or 500 ng mL–1 VEGF (30.15 ± 4.52%, 34.79 ± 4.01%, respectively). Total cell number of PA blastocyst after oocytes matured with 5 and 50 ng mL–1 VEGF was significantly higher (83.21 ± 4.89, 78.16 ± 6.15, respectively) than that of control and 500 ng mL–1 VEGF (56.91 ± 4.78, 55.93 ± 3.89, respectively). Similarly, the blastocyst formation rate after SCNT of oocytes matured with 5 ng mL–1 VEGF was significantly higher (14.54 ± 1.42%) than that of oocytes matured without VEGF (7.95 ± 1.44%). Total cell number of SCNT blastocyst after oocytes matured with 5 ng mL–1 VEGF was significantly higher (67.83 ± 6.56) than control (48.09 ± 5.36). Fully cumulus cell expansion was significantly higher in the 5 ng mL–1 VEGF treated group (85.37 ± 0.73%) compared with the control (58.89 ± 0.88%). In conclusion, adding 5 ng mL–1 VEGF during IVM improved the developmental potential of PA and SCNT in porcine embryos by increasing the intracellular GSH level. This work was supported by a grant (#20070301034040) from BioGreen 21 program, Rural Development Administration, Republic of Korea.

2010 ◽  
Vol 22 (1) ◽  
pp. 192
Author(s):  
Y. Liu ◽  
O. Østrup ◽  
J. Li ◽  
G. Vajta ◽  
L. Lin ◽  
...  

Pretreatment of somatic cells to promote subsequent reprogramming during somatic cell nuclear transfer (SCNT) may significantly improve efficiency of the technique. The aim of this study was to evaluate the effect of Xenopus laevis egg extract pretreatment of porcine fetal fibroblast cells using different permeabilization agents prior to SCNT. Fibroblasts were permeabilized using streptolysin O (SLO; 300 ng mL-1, 30 min, 37°C) or digitonin (7 μg mL-1, 2 min, 4°C), and exposed to egg extract for 1 h or 0.5 h, respectively. Cell membranes were resealed in DMEM supplemented with 2 mM CaCl2 for 2 h. After culture for 1, 3, and 5 days (for SLO) or 3 and 5 days (for digitonin), the SLO extract-treated cells (SETC) and digitonin extract-treated cells (DETC) were used as donor karyoplasts for handmade cloning. Controls were SCNT with nontreated cells. Embryos were evaluated for cleavage rate (Day 2), blastocyst rate (Day 6), and total cell numbers of blastocysts. Statistical differences were analyzed by ANOVA. Results are summarized in Table 1. When SETC were used as donors, blastocyst rates were significantly lower compared with the controls, except when the donor cells were cultured for 3 days after treatment. Blastocysts of the latter group also had higher total cell number. With DETC as donors, blastocyst rates and total cell number of embryos at Day 6 reconstructed with cells cultured for 5 days were higher than those in other groups. Results indicate that extract treatment of the donor cells after SLO-permeabilization can give higher number of cells in cloned blastocysts but not improve overall embryo development. However, digitonin treatment for donor cell permeabilization improved both embryo development and cell number of blastocyst. The latter effect was detected only 5 days after the treatment. In conclusion, qualitative efficiency of porcine SCNT could be improved with a combined donor cell permeabilization and extract treatment. Table 1.Effect of different permeabilization agents prior to SCNT


2008 ◽  
Vol 20 (1) ◽  
pp. 130
Author(s):  
D. Biswas ◽  
J. H. Lee ◽  
E. B. Jeung ◽  
E. S. Lee ◽  
S. H. Hyun

The addition of vascular endothelial growth factor (VEGF) to maturation media has beneficial effects on oocyte maturation and blastocyst formation (Einspanier et al. 2002 Mol. Reprod. Dev. 62, 29–36). The present study was conducted to examine the effect of parthenogenesis on in vitro-matured porcine oocytes with VEGF along with porcine follicular fluid in the maturation media. Porcine ovaries were collected from a local slaughter house in physiological saline. After aspiration, COC were matured in vitro in TCM-199 supplemented with 10 ng mL–1 of epidermal growth factor and (1) Group A: 10% pFF; (2) Group B: 10% pFF and 5 ng mL–1 of VEGF; (3) Group C: 10% polyvinyl alcohol; or (4) Group D: 5 ng mL–1 of VEGF plus 10% polyvinyl alcohol. Fifty COC were cultured for the first 22 h at 390�C in a humidified atmosphere of 5% CO2 in 95% air with 4 IU mL–1 of eCG and 4 IU mL–1 of hCG. They were then transferred to hormone-free medium and cultured for an additional 20 h. After culture, COC were denuded with hyaluronidase, and a proportion were stained with Hoechst 33342 for evaluating the metaphase II stage. The remaining oocytes were subjected to electrical parthenogenesis by using a 1-mm fusion chamber and were activated by applying 2 direct current pulses of 110V for 60 µs. Cleavage and blastocyst formation rate were evaluated under a stereomicroscope at 48 and 168 h after activation, respectively. Blastocyst quality was assessed by differential staining of inner cell mass and trophectoderm cells according to a modified staining procedure (Thouas et al. 2001 Reprod. Biomed. Online 3, 25–29). All data are presented as mean � SD and were analyzed by ANOVA followed by Duncan's multiple range test using SPSS 12.0 (SPSS Inc., Chicago, IL, USA). The maturation rate was significantly higher (P < 0.05) in Groups A and B than Groups C and D (76.1 � 9.6, 78.9 � 6.0 v. 60. � 14.2 and 58.3 � 14.3, respectively). The cleavage rate was significantly higher (P < 0.05) in Groups A and B (73.2 � 1.8 and 64.6 � 1.1, respectively) than Groups C and D (47.9 � 1.8 and 48.3 � 1.7, respectively). The blastocyst formation rate was significantly higher (P < 0.05) in Group B (32.6 � 2.4) compared to other groups. There was no significant difference in blastocyst cell number (inner cell mass or trophectoderm) among these groups. These data indicate that the exogenous VEGF along with pFF in the maturation media helps to increase the blastocyst formation rate in vitro, and it might be due to presence of some ligand/protein kinase in the pFF that plays an important role during the cyclic growth of oocytes.


2018 ◽  
Vol 30 (1) ◽  
pp. 222
Author(s):  
S. H. Lee ◽  
E. M. N. Setyawan ◽  
B. C. Lee

Progesterone (P4) and progesterone receptor signalling appears essential for maintenance of a proper cumulus cell expansion during the oocyte maturation by regulating the epidermal growth factor-like factors (EGF-F) related pathway during the ovulatory process. It is known that expression of EGF-F including amphiregulin (AREG), epiregulin (EREG), and betacellulin (BTC) is critical for cumulus–oocyte complex (COC) expansion and resumption of meiosis. Therefore, we hypothesised that oviduct cells might be involved in nonexclusive mechanisms of actions of P4 that in turn modulate oocyte meiosis resumption by regulating the levels of EGF-F. First, we added different concentrations of P4 (0, 0.5, 1, and 2 μg mL−1) to oviduct cell culture medium and assessed the effect of P4 on expression of AREG, EREG, and BTC in oviduct cells by immunocytochemical analysis. Then, the oviduct cells were used for co-culturing under the proper concentration of P4 with porcine oocytes. The COC were randomly cultured in 3 groups: (1) culturing without oviduct cells, (2) co-culturing with oviduct cells, and (3) co-culturing with oviduct cells treated with P4. After IVM, extrusion of the 1st polar body was observed under the microscope. To evaluate embryo development competence, the matured oocytes were activated with electrical stimulus and parthenotes were cultured in porcine zygote medium-5 for 7 days at 39°C, 5% CO2 and O2 in a humidified atmosphere. The cleavage and blastocyst formation rates were observed under the microscope to evaluate developmental competence. To count the total cell number of blastocysts, they were stained with 5 μg mL−1 of Hoechst 33342 for 10 min. The data were analysed by one-way ANOVA using GraphPad Prism 5.0 (GraphPad Inc., San Diego, CA, USA). Values are means ± standard error of mean (P < 0.05). Significantly higher levels of EGF-F were observed in oviduct cells treated with 1 μg mL−1 progesterone. The oocyte maturation rate of co-culture group treated with P4 (80.7 ± 1.6%) was significantly higher than that of the control (69.7 ± 2.1%). There was a significant difference between co-culture treated with P4 and the control in cleavage rate (67.2 ± 2.4% and 82.0 ± 1.6%). However, no significant difference was observed between the co-culture groups. The co-culture treated with P4 group showed significantly higher rate of blastocyst formation (37.7 ± 0.8%) and total cell number of blastocyst (72.8 ± 1.0) than control and co-culture groups. In conclusion, co-culturing with oviduct cell treated with P4 improved oocyte maturation and subsequent embryo development. Thus, we suggested that oviduct cells induce the expression of EGF-F under the treatment of P4, which has a beneficial effect on porcine oocyte development. This research was supported by NRF-20142A1021187, Korea IPET (#316002-05-2-SB010), RDA (#PJ010928032017) and Research Institute for Veterinary Science, the BK21 plus program.


2008 ◽  
Vol 20 (1) ◽  
pp. 99 ◽  
Author(s):  
A. E. Iager ◽  
Z. Beyhan ◽  
P. J. Ross ◽  
N. P. Ragina ◽  
K. Cunniff ◽  
...  

Faulty epigenetic reprogramming is a likely major cause of the low success rate observed in all mammals produced through somatic cell nuclear transfer (SCNT). It has been reported that treatment of reconstructed mouse embryos with the potent histone deacetylase inhibitor, trichostatin A (TSA), results in significantly increased developmental capacity of SCNT preimplantation embryos and live offspring (Kishigami et al. 2006 Biochem. Biophys. Res. Commun. 240, 183–189; Rybouchkin et al. 2006 Biol. Reprod. 74, 1083–1089; Kishigami et al. 2006 J. Reprod. Dev. 53, 165–170). Studies investigating similar reprogramming capabilities of TSA in bovine SCNT embryos report conflicting results (Akagi et al. 2007 Reprod. Fertil. Dev. 19, 24 abst; Iwamoto et al. 2007 Reprod. Fertil. Dev. 19, 48 abst). In this study, the effects of TSA treatment on in vitro development of bovine SCNT embryos were examined. Bovine fetal fibroblasts were cultured under contact inhibition for 2 to 5 days and used as donor cells for SCNT. Oocytes were aspirated from abattoir-derived ovaries, and matured in vitro for 18 h prior to enucleation. Reconstructed SCNT couplets were electrofused, and then activated 24 h post-maturation using 5 µm ionomycin followed by 2 mm dimethylaminopurine (DMAP) for 4 h. SCNT embryos were subjected to 0 (control; C-NT) or 50 nm TSA for 13 h post-ionomycin (hpi) TSAa-NT) or 13 hpi + 6 h starting from 40 hpi (TSAb-NT). IVF embryos were produced as an additional control. All embryos were cultured in KSOM supplemented with 3 mg mL–1 BSA for 7.5 days, with 5% FBS added on Day 3. Experiments were repeated 3 or 7 times, and data were analyzed a -way ANOVA procedure. Developmental rates to the blastocyst stage and total cell number of blastocysts were determined. Total cell numbers were determined by fixing blastocysts in 4% paraformaldehyde, and staining with bisbenzimide 33342, followed by microslide mounting and visualization using an epifluorescence microscope. No difference was observed in cleavage rates among the four treatment groups, C-NT, TSAa-NT, TSAb-NT, and IVF, with the rates being 66%, 75%, 73.1%, and 82.3%, respectively (P = 0.33); nor was any improvement seen in the rate of blastocyst development of TSAa-NT or TSAb-NT over C-NT embryos: 36%, 40.2%, and 30.2%, respectively (P = 0.22). Furthermore, there was no significant difference in mean total cell number of blastocysts among treatment groups: C-NT, 120.2; TSAa-NT, 124.2; TSAb-NT, 129.3; and IVF, 141.1 (P = 0.29). These results suggest that 50 nm TSA treatment immediately following activation does not affect the development of bovine SCNT preimplantation embryos.


2004 ◽  
Vol 16 (2) ◽  
pp. 146
Author(s):  
S. Kim ◽  
D.H. Nam ◽  
Y.W. Jung ◽  
H.S. Kim ◽  
S.H. Lee ◽  
...  

The developmental potential of in vitro production of embryos is affected by various factors, including the culture system, oocyte quality, the presence of serum, and embryo paracrine and autocrine growth factors. Insulin-like growth factor is a good stimulator of oocyte maturation and embryo development. The present study investigated the effect of insulin-like growth factor-I (IGF-I) supplement on the preimplantation development of porcine embryos derived from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). Developmental competence was evaluated by monitoring the numbers of 2-cell embryos and blastocysts at Days 2 and 7, respectively. The number of total cells and inner cell mass (ICM) cells in blastocysts were counted after differential staining at Day 7. All data were analyzed by ANOVA using a Generalized Linear Model (SAS). In Experiment 1, a total of 2,462 in vitro-matured oocytes (527, 458, 498, 481 and 498, respectively) were inseminated with frozen-thawed boar semen and subsequently cultured in North Carolina State University (NCSU)-23 medium supplemented with various concentrations of IGF-1 (0, 1, 10, 50 and 100ngmL−1). As a result, significant model effects on the development to the 2-cell stage (P=0.033) and to the blastocyst stage (P=0.0067) were found, and more blastocysts (16.9, 16.6, 17.5, 21.8 and 14.7 %, respectively) were obtained in medium supplemented with 50ngmL−1 of IGF-I. Moreover, increase in the total cell number (56.5, 53.2, 74.0, 76.4 and 58.4) and ICM (6.6, 5.8, 9.3, 9.4 and 6.1) cells was observed in IVF embryos cultured in NCSU-23 medium supplemented with 50ngmL−1 IGF-1. In Experiment 2, porcine cloned embryos were produced by our standard protocol using fetal fibroblasts as donor cells (Hyun SH et al., 2003 Theriogenology 59, 1641–1649) and cultured in NCSU-23 supplemented with the same concentration of IGF-1 as Experiment 1. As a result, a total of 501 reconstructed oocytes (99, 98, 102, 99 and 96, respectively) were cultured and significant model effects on the development to the 2-cell stage (P=0.0179) were found. More blastocysts (10.5, 11.2, 11.8, 20.8 and 10.1%) were produced when embryos were cultured in NCSU-23 medium supplemented with 50ngmL−1, even though no statistical significance was found (P=0.1182). Increases in the total cell number (42.7, 46.0, 45.9, 51.1 and 38.2) and ICM cells (3.8, 3.8, 5.6, 6.6 and 4.8, respectively) were observed in cloned embryos cultured in NCSU-23 medium supplemented with 50ngmL−1 of IGF-I. In conclusion, the present study demonstrated that IGF-1 at the concentration of 50ngmL−1 improves the development of preimplantion embryos derived from IVF and SCNT. This study was supported by the Advanced Backbone IT Technology Development (IMT 2000-C1-1).


2009 ◽  
Vol 21 (1) ◽  
pp. 123
Author(s):  
H. J. Oh ◽  
J. E. Park ◽  
M. J. Kim ◽  
S. G. Hong ◽  
J. T. Kang ◽  
...  

Epigenetic reprogramming such as acetylation in somatic cell nuclear transfer (SCNT) has been known as one of problems in cloned embryos. For resolving this acetylation reprogramming, many investigators recently have reported the effect of long-term culture of post-activated SCNT embryos using trichostatin A (TSA), a histone deacetylase inhibitor (HDACi). The objective of this study is to investigate the effect of short-term TSA treatment on in vitro developmental ability and the quality of bovine SCNT embryos. Immature oocytes were aspirated from abattoir-derived ovaries, matured in vitro for 22 h, and enucleated. A bovine fetal fibroblast was placed into the enucleated oocyte and fused by electrical stimulation. The fused couplets were activated by 4-min incubation in 10 μm ionomycin, followed by 4 h of culture in 1.9 mm 6-dimethylaminopurine with or without TSA (0, 50, or 100 nm). The SCNT embryos were subsequently cultured in modified synthetic oviduct fluid medium for 8 days. Developmental competence was assessed by blastocyst formation and total cell number. Total cell numbers were determined by staining with bisbenzimide 33342. As results, developmental competence to blastocysts was higher in 100 nm than control (36.7 v. 27.9%, P < 0.05). In blastocyst hatching rate, TSA 100 nm group (19.5%) at 8 days showed an increased pattern as opposed to control and TSA 50 nm group (11.1 and 12.7%; P < 0.05). No significant differences in two cell and morula stage were observed among treatment groups. In terms of development to hatching stage of blastocysts, TSA 100 nm group (19.5%) at 8 days has a significant effect compared to control and TSA 50 nm group (11.1 and 12.7%; P < 0.05). Total cell number of blastocysts derived from TSA 100 nm was significantly higher (P < 0.05) than that in TSA 50 nm (116 v. 100), whereas there was not significant difference between control and TSA 100 nm. In conclusion, short-term culture with high concentration of TSA improved the blastocysts formation however total cell number of blastocysts showed contradictory result. The epigenetic modification by TSA treatment on bovine SCNT needs further investigation. This study was financially supported by KOSEF (grant # M10625030005-08N250300510) and the Korean MEST, through the BK21 program for Veterinary Science.


2009 ◽  
Vol 21 (1) ◽  
pp. 178 ◽  
Author(s):  
B. M. Kumar ◽  
E. St. John ◽  
P. M. Mackie ◽  
W. A. King ◽  
G. F. Mastromonaco

Wood bison (Bison bison athabascae) are currently classified as threatened in Canada. Interspecies somatic cell nuclear transfer (iSCNT) is a valuable tool for embryo production in non-domestic species in which access to gametes is limited. Unlike fertilization, SCNT allows preservation of the entire genome, thus avoiding dilution of valuable alleles, an important factor for the preservation of genetic diversity. The present study compared the developmental competence of iSCNT embryos reconstructed from adult female wood bison ear fibroblasts (bison NT) with development of embryos reconstructed from adult female cattle ear fibroblasts (cattle NT). Domestic cattle (Bos taurus) oocytes were used as recipient ooplasm for both donor cell types. In vitro fertilized (IVF) and parthenogenetic (PA) cattle embryos were used as controls. Fibroblast cultures at passages 3 to 5 confluent for 5 days were used for SCNT. Mature oocytes were enucleated, reconstructed by transfer of donor cells, and fused with an electrical stimulus of 1.5 kV cm–1 for 40 μs in 0.28 m mannitol containing 100 μm CaCl2 and MgCl2. Oocytes for parthenogenesis and following reconstruction were activated for 5 min in 5 μm ionomycin followed by 5 h in 10 μg mL–1 cycloheximide. Embryos produced by IVF, PA, and SCNT were cultured in modified synthetic oviductal fluid medium at 38.5°C in 5% CO2, 5% O2, 90% N2. Cleavage, blastocyst development to day 8, apoptosis (TUNEL assay, Roche Diagnostics, IN, USA), and total cell number were evaluated. Statistical analyses were carried out using one-way ANOVA, followed by Tukey post hoc analysis or the equivalent nonparametrical Kruskal-Wallis test. Cleavage rate was significantly (P < 0.05) higher in the IVF group than in all other groups (86.9 ± 2.9% v. 71.6 ± 4.5% to 78.1 ± 5.1%). Blastocyst rates, expressed as a percentage of cleaved embryos, were similar among all treatment groups (33.4 ± 3.3% to 39.8 ± 5.7%) except for bison NT which had significantly (P < 0.05) lower development to blastocyst (19.2 ± 5.5%). The percentages of TUNEL-positive cells among PA embryos (6.6 ± 1.5%) and bison NT embryos (6.7 ± 2.4%) were significantly (P < 0.05) higher than in IVF embryos (4.2 ± 1.0%), but similar to cattle NT embryos (5.4 ± 1.7%), which did not differ from the IVF group. Total cell number was significantly (P < 0.05) higher in the IVF group than in all other groups (133.2 ± 10.2 v. 91.2 ± 7.8 to 100.1 ± 12.9). These results confirm that in vitro-matured domestic cattle oocytes can serve as suitable recipients of wood bison somatic cells and that iSCNT may provide a possible alternative for embryo production and genetic preservation of endangered cattle species. Both the incidence of apoptotic cells and total cell number did not differ between cattle and bison NT embryos; thus other factors must play a role in the significantly decreased blastocyst development observed in bison NT embryos. This work was supported by Endangered Species Reserve Fund, Toronto Zoo, and the Canada Research Chairs program.


2004 ◽  
Vol 16 (2) ◽  
pp. 199
Author(s):  
D.H. Kim ◽  
B.C. Yang ◽  
S.K. Lee ◽  
H.S. Park ◽  
S.B. Park ◽  
...  

Fibroblast growth factor-4 (FGF-4) has been shown to be preferentially produced in the inner cell mass (ICM) of mouse blastocysts, to stimulate the proliferation of mouse trophectoderm (TE) cells and to repress their transformation and differentiation into giant trophoblasts. Recent studies have shown that nuclear transfer (NT) bovine embryos have aberrant allocations of ICM and TE cells (Koo et al., 2002 Biol. Report. 67, 487–492) and aberrant expression of FGF-4 gene (Daniels et al., 2000 Biol. Reprod.63, 1034–1040). In this study, we examined whether recombinant human FGF-4 (rhFGF-4) stimulates development of nuclear transfer bovine embryos. As donor cells for NT, bovine ear skin fibroblast cells of passage 5 to 8 were used. Oocytes were enucleated after in vitro maturation in TCM 199 supplemented with 10% FBS, 1μgmL−1 FSH and 1μgmL−1 estradiol-17β for 20h. Enucleated oocytes were fused with donor cells by a DC pulse of 25V/150μm for 10μs in Zimmerman cell fusion medium. For activation, fused oocytes were exposed to 10μM Ca-Ionophore for 5min, followed by 2mM 6-dimethylaminopurine for 3h. NT embryos were subsequently cultured in CR2 medium (containing 0.5% BSA) without or with rhFGF-4 (1, 10 and 100ngmL−1) at 39.0°C in 5% O2, 5% CO2 and 90% N2. After 7 days of culture, blastocyst formation was observed. Apoptotic cells in blastocysts were detected by a terminal deoxynucleotidyl transferase-mediated d-UTP nick end-labeling (TUNEL) assay and total cell number was examined by propidium iodide (PI) counterstaining. Data were analyzed by chi-square test and Student’s t-test. Supplementation of serum-free medium with rhFGF-4 increased the proportion of embryos developing to the blastocyst stage (18.4, 29.4 and 23.5% for 0, 1 and 10ngmL−1 FGF-4, respectively) and total cell number of blastocysts (66.3±11.4, 75.9±25.5 and 74.4±22.4 for 0, 1 and 10ngmL−1 FGF-4). Particularly, 100ngmL−1 FGF-4 significantly (P&lt;0.05) increased the proportion of blastocysts (40.4%) and total cell number of blastocysts (86.7±26.5) when compared with TCM 199 medium alone. FGF-4 also decreased the mean proportion of apoptotic cells in blastocysts (10.6±7.8, 7.4±5.3, 8.6±5.3 and 7.5±4.1% for 0, 1, 10 and 100ngmL−1 FGF-4). Our results suggest that FGF-4 may play a role in the early development of NT bovine embryos and might be a useful molecule for increasing development of NT bovine embryos in serum-free culture systems.


Sign in / Sign up

Export Citation Format

Share Document