scholarly journals 48EFFECT OF INSULIN-LIKE GROWTH FACTOR-1 SUPPLEMENT TO NCSU-23 MEDIUM ON PREIMPLANTATION DEVELOPMENT OF PORCINE EMBRYOS DERIVED FROM IN VITRO FERTILIZATION AND SOMATIC CELL NUCLEAR TRANSFER

2004 ◽  
Vol 16 (2) ◽  
pp. 146
Author(s):  
S. Kim ◽  
D.H. Nam ◽  
Y.W. Jung ◽  
H.S. Kim ◽  
S.H. Lee ◽  
...  

The developmental potential of in vitro production of embryos is affected by various factors, including the culture system, oocyte quality, the presence of serum, and embryo paracrine and autocrine growth factors. Insulin-like growth factor is a good stimulator of oocyte maturation and embryo development. The present study investigated the effect of insulin-like growth factor-I (IGF-I) supplement on the preimplantation development of porcine embryos derived from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). Developmental competence was evaluated by monitoring the numbers of 2-cell embryos and blastocysts at Days 2 and 7, respectively. The number of total cells and inner cell mass (ICM) cells in blastocysts were counted after differential staining at Day 7. All data were analyzed by ANOVA using a Generalized Linear Model (SAS). In Experiment 1, a total of 2,462 in vitro-matured oocytes (527, 458, 498, 481 and 498, respectively) were inseminated with frozen-thawed boar semen and subsequently cultured in North Carolina State University (NCSU)-23 medium supplemented with various concentrations of IGF-1 (0, 1, 10, 50 and 100ngmL−1). As a result, significant model effects on the development to the 2-cell stage (P=0.033) and to the blastocyst stage (P=0.0067) were found, and more blastocysts (16.9, 16.6, 17.5, 21.8 and 14.7 %, respectively) were obtained in medium supplemented with 50ngmL−1 of IGF-I. Moreover, increase in the total cell number (56.5, 53.2, 74.0, 76.4 and 58.4) and ICM (6.6, 5.8, 9.3, 9.4 and 6.1) cells was observed in IVF embryos cultured in NCSU-23 medium supplemented with 50ngmL−1 IGF-1. In Experiment 2, porcine cloned embryos were produced by our standard protocol using fetal fibroblasts as donor cells (Hyun SH et al., 2003 Theriogenology 59, 1641–1649) and cultured in NCSU-23 supplemented with the same concentration of IGF-1 as Experiment 1. As a result, a total of 501 reconstructed oocytes (99, 98, 102, 99 and 96, respectively) were cultured and significant model effects on the development to the 2-cell stage (P=0.0179) were found. More blastocysts (10.5, 11.2, 11.8, 20.8 and 10.1%) were produced when embryos were cultured in NCSU-23 medium supplemented with 50ngmL−1, even though no statistical significance was found (P=0.1182). Increases in the total cell number (42.7, 46.0, 45.9, 51.1 and 38.2) and ICM cells (3.8, 3.8, 5.6, 6.6 and 4.8, respectively) were observed in cloned embryos cultured in NCSU-23 medium supplemented with 50ngmL−1 of IGF-I. In conclusion, the present study demonstrated that IGF-1 at the concentration of 50ngmL−1 improves the development of preimplantion embryos derived from IVF and SCNT. This study was supported by the Advanced Backbone IT Technology Development (IMT 2000-C1-1).

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 327-328
Author(s):  
Galina Singina

Abstract The oocyte quality acquired during in vitro maturation (IVM) are the main limitative factors affecting the embryo production. The aim of the present research was to study effects of fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1) during IVM of bovine oocytes on their developmental potential after parthenogenetic activation. Bovine cumulus-oocyte complexes (COC; n = 1176) were cultured for 22h in either standard maturation medium (TCM-199 supplemented with 10% fetal calf serum (FCS), 0.2 mM sodium pyruvate, 10 μg/ml FSH and 10 μg/ml LH; Control) or maturation medium supplemented with different concentrations (5–160 ng/ml) of FGF2 and IGF1. After IVM, matured oocytes activated by sequential treatment with ionomycin followed by DMAP and cyclohexamide and then cultured up to the blastocyst stage. The obtained blastocysts were fixed, and the total cell number and the level of apoptosis were determined using DAPI and TUNEL staining. The data from 4 replicates (77–91 oocytes per treatment) were analyzed by ANOVA. Cleavage rates of activated oocytes did not differ between groups and ranged from 63.7 to 68.1%. The addition of 10, 20 and 40 ng/ml of FGF2 to the IVM medium led to an increase in the yield of blastocysts [from 19.6±1.8% (Control) to 35.2±3.4, 29.8±1.9 and 31.1±2.1%, respectively (P<0.05)] and in the total cell number in embryos that developed to the blastocyst stage (P<0.05). Meanwhile, the blastocyst yield and the total cell number in blastocysts in the IGF1-treated groups were similar to that in the control group. No effects of both growth factors on the proportion of apoptotic nuclei in blastocysts (5.3–7.1%) were observed. Thus, FGF2 (but not IGF1) are able to maintain competence for parthenogenetic development of bovine COC during their maturation invitro. Supported by RFBR (18-29-07089) and the Ministry of Science and Higher Education of Russia.


2006 ◽  
Vol 18 (2) ◽  
pp. 196
Author(s):  
M. Sakatani ◽  
I. Suda ◽  
T. Oki ◽  
S.-I. Kobayashi ◽  
S. Kobayashi ◽  
...  

Development of cleavage-stage pre-implantation embryos is disrupted by exposure to heat shock. Heat shock also increases intracellular reactive oxygen species (ROS) in pre-implantation embryos. Therefore, reduction of intracellular ROS levels might improve the development of heat-shocked embryos. Recently the antioxidative activities of polyphenols have been widely reported to reduce the oxidative stress. In this study, we investigated the effect of purple sweet potato anthocyanin, a kind of polyphenol that is a strong ROS scavenger, on development and intracellular redox status of bovine pre-implantation embryos exposed to heat shock. Experiment 1: In vitro-produced 8-16-cell-stage embryos on Day 2 after fertilization were exposed to 41.5�C for 6 h in CR1aa containing 0, 0.1, 1, and 10 �g/mL anthocyanin at 5% CO2, 5% O2, and 90% N2. After heat shock, embryos were cultured at 38.5�C at 5% CO2, 5% O2 until Day 8. On Day 8, the proportion of embryos developing to the blastocyst stage was evaluated. Blastocyst total cell number and the ratio between inner cell mass and tropheoderm were evaluated by differential staining. The experiment was replicated five times with more than 70 embryos used in each treatment. Experiment 2: Heat shock treatment of in vitro-produced 8-16-cell-stage embryos was carried out as described in experiment 1. After heat shock, intracellular ROS and glutathione (GSH) levels were measured in individual 8-16 cell stage embryos with fluorescent probes (22,72-dichlorodihydrofluorescein diacetate for ROS and CellTracker" Blue (Invitrogen Japan K. K., Tokyo, Japan) for GSH). The fluorescence emissions of each treatment were normalized to those of 8-16 cell stage embryos cultured at 38.5�C without anthocyanin to obtain the relative fluorescence emission. This experiment was replicated four times. Embryos treated with heat stress without anthocyanin (0 �g/mL) showed low development (14.6 � 3.6%) and blastocyst total cell number (88.2 � 9.4). However, embryos treated with 0.1 �g/mL anthocyanin improved development (31.7 � 4.5%, P < 0.05) and increased the total cell number (96.5 � 11.3). The higher concentrations of anthocyanin (1 and 10 �g/mL) did not affect development and cell number. The intracellular ROS levels in heat-shocked embryos were significantly reduced by all concentrations of anthocyanin (P < 0.05). In addition, anthocyanin increased GSH levels at all doses tested (P < 0.05). These results indicate that an appropriate concentration of anthocyanin improves development by regulating intracellular redox balance in bovine embryos exposed to heat shock.


2013 ◽  
Vol 25 (1) ◽  
pp. 260 ◽  
Author(s):  
I. Grad-Mandryk ◽  
J. Kosenyuk ◽  
B. Gajda

In vitro production of porcine embryos is still relatively inefficient. The main reasons for this limited performance are polyspermy after IVF and the poor developmental ability of obtained zygotes. Intracytoplasmic sperm injection (ICSI) is one possible solution to eliminate polyspermy. The aim of this study was to compare the developmental competence of pig zygotes, total cell number, and DNA fragmentation of pig blastocysts derived from IVF or ICSI. Cumulus–oocyte complexes were obtained by aspiration from antral follicles of ovaries collected from slaughtered gilts. The oocytes were then cultured in modified TC-199 medium to metaphase II for 42 h. Semen for IVF was incubated in modified capacitation medium (M199) for 1 h. The sperm fraction (1 × 106 cells mL–1) was introduced into droplets containing oocytes, and then gametes were co-incubated for 4 h in modified TC-199 medium. Intracytoplasmic sperm injection was performed using a mechanical micromanipulator (Research Instruments Limited, Cornwall, UK). Micromanipulation was carried out in modified NCSU-37 medium. The tails of spermatozoa were broken, and then single spermatozoa were aspirated into the injection pipette. The oocyte was fixed by a holding pipette, and the sperm head was then introduced into the oocyte cytoplasm. Presumptive zygotes were cultured in vitro for 144 h in NCSU-23 medium. The embryo quality criteria were developmental competence (morula and blastocyst rates), total cell number per blastocyst, and degree of apoptosis assessed by TUNEL staining. Data were analysed by chi-squared test. The experiment was performed on 136 zygotes (6 replicates) obtained after IVF and 83 zygotes (4 replicates) obtained after ICSI. Percentages of embryos developed to the morula and blastocyst stages were 42.3 ± 6.1 and 28.8 ± 4.7 after IVF, respectively, and 51.7 ± 15.4 and 34.5 ± 18.9 after ICSI, respectively (no differences were observed). Significant differences were noticed in total number of cells per blastocyst between embryos after IVF and ICSI (33.7 ± 5.39 v. 22.8 ± 3.22; P < 0.01). However, there was no difference in the degree of apoptosis between IVF and ICSI embryos (5.14 ± 3.49 and 6.14 ± 4.88, respectively). Our preliminary studies demonstrated a higher proportion of cell numbers in IVF-derived embryos compared with those produced by ICSI, but the developmental competence and degree of apoptosis, as evaluated by the TUNEL method, in both groups were comparable. This study was funded by project N N311 516140 by the NCN, Poland.


2016 ◽  
Vol 28 (2) ◽  
pp. 170
Author(s):  
L. D. Spate ◽  
B. K. Redel ◽  
R. S. Prather

Early porcine embryo metabolism in vitro is not completely understood. It has been suggested that before embryo genome activation (4-cell stage), the preferred energy source of the embryo is pyruvate. In our porcine zygote culture medium (MU1), the energy sources are 0.2 mM pyruvate and 2.0 mM calcium lactate. Three experiments were performed with in vitro-matured and IVF embryos to examine the effect on blastocyst development after withholding pyruvate and/or lactate during the first 48 h of culture. In Experiment 1, embryos were cultured without lactate for 48 and then cultured to Day 6 in control medium containing lactate. Control embryos were cultured in medium with lactate starting after fertilization to Day 6. All data were analysed by using SAS 9.3 with a GENMOD procedure used for the blastocyst data and a GLM procedure used for the cell number data. On Day 6, the percentage of embryos that formed blastocysts was 30.2% for control and 26.5% for embryos cultured for 48 h without lactate (n = 490, 4 replications). The difference was not significant P > 0.05. In Experiment 2, embryos were cultured without pyruvate for 48 and then cultured to Day 6 in control medium containing pyruvate. Control embryos were cultured in medium with pyruvate starting after fertilization to Day 6. On Day 6, the percentage of embryos that formed blastocysts was 31.1% for control and 30.5% for embryos cultured for 48 h without pyruvate (n = 385, 3 replications). In Experiment 3, embryos were cultured in control medium for the first 48 h and then cultured to Day 6 in medium without pyruvate, thus forcing the embryos to use lactate instead of pyruvate. On Day 6, the percentage of embryos that formed blastocysts in the pyruvate free medium increased from 28.6%a ± 1.0 to 33.9%b ± 1.0; P ≤ 0.05 (n = 490, 4 replications) compared with the control and total cell number increased from 30.7a ± 1.5 to 41.3b ± 1.8 cells, respectively; P ≤ 0.05 (n = 65, 4 replications). The results from Experiments 2 and 3 were unanticipated as it was believed that the embryo would be more dependent on pyruvate for energy up to the blastocyst stage. We believed in Experiment 2 that from zygote to 4 cells the embryos were not as capable of using lactate and that removing the pyruvate would hinder further development. In Experiment 3, forcing the embryo to use lactate from Day 2 to Day 6 significantly improved blastocyst development and total cell number, suggesting that the embryo is not dependent on a specific energy source or that there are adequate pyruvate stores in the oocyte to 4-cell stage, to promote development to blastocyst. Funding was provided by Food for the 21st Century, the University of Missouri, and the National Institutes of Health (OD011140).


2011 ◽  
Vol 23 (1) ◽  
pp. 165 ◽  
Author(s):  
D. Biswas ◽  
Y.-B. Jeon ◽  
G.-H. Kim ◽  
E.-B. Jeung ◽  
S. H. Hyun

In the present study, pig cumulus–oocyte complexes were cultured in medium supplemented with different concentrations (0, 5, 50, and 500 ng mL–1) of vascular endothelial growth factor (VEGF), and then the maturation and intracellular glutathione (GSH) concentration of oocytes were examined. In addition, the development of oocytes matured with different concentrations of VEGF after parthenogenetic activation (PA) or somatic cell nuclear transfer (SCNT) was observed. Although the maturation rate of oocytes was not affected by VEGF concentrations (81.13 ± 2.61%, 83.93 ± 1.97%, 82.14 ± 4.03%, 75.24 ± 2.68%, respectively), the intracellular GSH concentrations of oocytes matured with 5 and 50 ng mL–1 VEGF were significantly higher (12.68 ± 0.08, 12.33 ± 0.53 pMol/oocyte, respectively) than those of oocytes matured with 0 or 500 ng mL–1 VEGF (10.19 ± 0.66, 10.54 ± 0.54 pMol/oocyte, respectively). The blastocyst formation rates after PA of oocytes matured with 5 and 50 ng mL–1 VEGF were significantly higher (58.99 ± 4.70% and 54.00 ± 1.09%, respectively) than that of oocytes matured with 0 or 500 ng mL–1 VEGF (30.15 ± 4.52%, 34.79 ± 4.01%, respectively). Total cell number of PA blastocyst after oocytes matured with 5 and 50 ng mL–1 VEGF was significantly higher (83.21 ± 4.89, 78.16 ± 6.15, respectively) than that of control and 500 ng mL–1 VEGF (56.91 ± 4.78, 55.93 ± 3.89, respectively). Similarly, the blastocyst formation rate after SCNT of oocytes matured with 5 ng mL–1 VEGF was significantly higher (14.54 ± 1.42%) than that of oocytes matured without VEGF (7.95 ± 1.44%). Total cell number of SCNT blastocyst after oocytes matured with 5 ng mL–1 VEGF was significantly higher (67.83 ± 6.56) than control (48.09 ± 5.36). Fully cumulus cell expansion was significantly higher in the 5 ng mL–1 VEGF treated group (85.37 ± 0.73%) compared with the control (58.89 ± 0.88%). In conclusion, adding 5 ng mL–1 VEGF during IVM improved the developmental potential of PA and SCNT in porcine embryos by increasing the intracellular GSH level. This work was supported by a grant (#20070301034040) from BioGreen 21 program, Rural Development Administration, Republic of Korea.


2011 ◽  
Vol 23 (1) ◽  
pp. 146
Author(s):  
C. N. Murphy ◽  
L. D. Spate ◽  
B. K. Bauer ◽  
R. S. Prather

One barrier to successfully making embryo transfer viable in the swine industry is an inability to consistently cryopreserve oocytes and embryos. This process is made difficult by the high lipid content of porcine oocytes and embryos. The objective of this study was to test the in vivo fertilized embryo’s sensitivity to vitrification. Gilts were inseminated on the first day of standing oestrus (Day 0) and then again 12 h later. On Day 2 the oviducts and tip of the uterine horns were flushed with PVA-treated TL-HEPES and 2-cell stage embryos were collected and placed into PVA-treated TL-HEPES and centrifuged at 17 000 × g. The treatment groups were 1) 300 mOsmo centrifuged for 6 min, 2) 500 mOsmo centrifuged for 6 min, 3) 500 mOsmo centrifuged for 12 min, and 4) 500 mOsmo centrifuged for 18 min. After centrifugation the embryos were transferred to Porcine Zygote Medium 3 (PZM3) and cultured to Day 6 or 7 at which point blastocysts were vitrified using 10% DMSO, 10% ethylene glycol in M199 supplemented with 20% FBS (holding medium) for 2 min. Embryos were transferred to holding media with 20% DMSO and 20% ethylene glycol and drawn into an open pulled straw via capillary reaction; it was then submerged into LN2. Embryos were thawed using a step down concentration of 0.33 mM and then 0.2 mM sucrose in holding media each for 6–7 min and then were moved to holding medium alone for 6 to 7 min. The embryos were washed in PZM3, then transferred to 500 μL of PZM3 and cultured for 18 h. Re-expanded embryos were observed, and the nuclei of all embryos were stained with Biz-benzimide and visualised with UV light to determine total cell number. After the embryos were centrifuged and cultured, there was no difference in development to blastocyst (SAS Institute, Cary, NC, USA; Proc GLM) with a mean percentage blastocyst of 85.1% and an N of 54, 51, 53, and 51, respectively, for each treatment. After thawing, percentage of embryos re-expanded was 23.5a, 26.4a,b, 43.2a,b, and 45.6b, respectively. Data was analysed using a PROC GLM in SAS (P < 0.05), with 37, 43, 30, and 36 embryos in each group, respectively. No difference in total cell number across treatments was detected after analysis using PROC GLM in SAS (P < 0.05) with a mean cell number of 29.0. These data suggest that in vivo matured and fertilized blastocysts can survive high osmolarity treatment, centrifugation, and vitrification. The data also show that a high osmolarity treatment centrifuged for 18 min leads to a greater number of re-expanded embryos post-thaw, which may be attributed to better separation of the lipid. Funded by the NIH NCRR R21RR025879 and Food for the 21st Century.


2004 ◽  
Vol 16 (2) ◽  
pp. 201 ◽  
Author(s):  
F.V. Meirelles ◽  
K.L. Schwarz ◽  
G.K.F. Merighe ◽  
S.F. Carambula ◽  
Y.F. Watanabe

Apoptosis has been previously reported in embryos during late pre-implantation development. Fast-developing embryos are known to present higher developmental competence. The aim of the present work was to evaluate the quality of in vitro-produced bovine embryos with fast (8-cells at 48 hours post-insemination (hpi) and slow (8-cells at 90hpi) cleavage and study the correlation of this phenotype with programmed cell death occurrences. Embryos were produced from immature oocytes obtained from slaughtered cow ovaries, after maturation and fertilization, presumed zygotes were cultured in CR2 medium with 10% FCS, together with granulosa cells under 5% CO2 atmosphere. The number of nuclei in the inner cell mass and trophectoderm (ICM/TE), as well as the number of nuclei with fragmented DNA, were estimated by applying differential staining and TUNEL, respectively; data were analyzed by ANOVA (JMP—SAS Institute). To test the expression of apoptosis regulating genes, a pool of fifty 8-cell embryos from each group (fast and slow) were collected. After RNA extraction and reverse transcriptase reaction, cDNA was amplified with Bax and Bcl2 primers, individually. Results indicated, as expected, higher quality in fast-cleaving embryos, estimated by the number of ICM nuclei (20.8±1.4 and 15.6±2.1—P≤0.05); however, the number of TE didn’t show significant differences (54.9±2.4 and 53.2±3.8); the same was observed for total cell number (75.7±2.8 and 68.8±4.4). The frequency of blastocyst TUNEL-positive nuclei as an estimate of total cell number was significantly larger in the slow group when compared to the rapid development group (19.0±2.5% and 8.5±1.4%, respectively, P≤0.05). The greater proportion of morphologic abnormal nuclei in both groups was located in the ICM, and may explain the lower number of ICM nuclei in slow developing embryos. Hence, embryos of slow development show TUNEL-positive blastomeres at the 8-cell stage, but no fragmented nuclei were observed in embryos at 48hpi. Bax and Bcl2 cDNA amplification showed that both mRNAs were constitutively present at the 8-cell stage in both groups. It can be concluded that in vitro-produced bovine blastocysts, with slow development to the 8-cell stage, present lower quality compared with fast development homologues, estimated by mean number of ICM nuclei, as well as nuclei fragmentation in blastomeres (TUNEL-positive). There is a difference in fragmented nuclei proportion between both groups at the 8-cell stage, but this result may be biased by the numbers of hours in culture. It was possible to demonstrate the presence of mRNA for pro (Bax) and anti-apoptotic (Bcl2) genes in slow- and fast-developing embryos at the 8-cell stage, and the future determination of the ratio between these two transcripts may allow the evaluation of the participation of pre-transcriptional regulation of these genes on the induction of DNA fragmentation. Financial support: Grant 99/12351-3 FAPESP São Paulo, Brazil.


2008 ◽  
Vol 20 (1) ◽  
pp. 99 ◽  
Author(s):  
A. E. Iager ◽  
Z. Beyhan ◽  
P. J. Ross ◽  
N. P. Ragina ◽  
K. Cunniff ◽  
...  

Faulty epigenetic reprogramming is a likely major cause of the low success rate observed in all mammals produced through somatic cell nuclear transfer (SCNT). It has been reported that treatment of reconstructed mouse embryos with the potent histone deacetylase inhibitor, trichostatin A (TSA), results in significantly increased developmental capacity of SCNT preimplantation embryos and live offspring (Kishigami et al. 2006 Biochem. Biophys. Res. Commun. 240, 183–189; Rybouchkin et al. 2006 Biol. Reprod. 74, 1083–1089; Kishigami et al. 2006 J. Reprod. Dev. 53, 165–170). Studies investigating similar reprogramming capabilities of TSA in bovine SCNT embryos report conflicting results (Akagi et al. 2007 Reprod. Fertil. Dev. 19, 24 abst; Iwamoto et al. 2007 Reprod. Fertil. Dev. 19, 48 abst). In this study, the effects of TSA treatment on in vitro development of bovine SCNT embryos were examined. Bovine fetal fibroblasts were cultured under contact inhibition for 2 to 5 days and used as donor cells for SCNT. Oocytes were aspirated from abattoir-derived ovaries, and matured in vitro for 18 h prior to enucleation. Reconstructed SCNT couplets were electrofused, and then activated 24 h post-maturation using 5 µm ionomycin followed by 2 mm dimethylaminopurine (DMAP) for 4 h. SCNT embryos were subjected to 0 (control; C-NT) or 50 nm TSA for 13 h post-ionomycin (hpi) TSAa-NT) or 13 hpi + 6 h starting from 40 hpi (TSAb-NT). IVF embryos were produced as an additional control. All embryos were cultured in KSOM supplemented with 3 mg mL–1 BSA for 7.5 days, with 5% FBS added on Day 3. Experiments were repeated 3 or 7 times, and data were analyzed a -way ANOVA procedure. Developmental rates to the blastocyst stage and total cell number of blastocysts were determined. Total cell numbers were determined by fixing blastocysts in 4% paraformaldehyde, and staining with bisbenzimide 33342, followed by microslide mounting and visualization using an epifluorescence microscope. No difference was observed in cleavage rates among the four treatment groups, C-NT, TSAa-NT, TSAb-NT, and IVF, with the rates being 66%, 75%, 73.1%, and 82.3%, respectively (P = 0.33); nor was any improvement seen in the rate of blastocyst development of TSAa-NT or TSAb-NT over C-NT embryos: 36%, 40.2%, and 30.2%, respectively (P = 0.22). Furthermore, there was no significant difference in mean total cell number of blastocysts among treatment groups: C-NT, 120.2; TSAa-NT, 124.2; TSAb-NT, 129.3; and IVF, 141.1 (P = 0.29). These results suggest that 50 nm TSA treatment immediately following activation does not affect the development of bovine SCNT preimplantation embryos.


Sign in / Sign up

Export Citation Format

Share Document