THE QUEST FOR PORCINE PLURIPOTENT STEM CELLS

2013 ◽  
Vol 25 (1) ◽  
pp. 319
Author(s):  
Stoyan Petkov

The isolation of embryonic stem cells (ESC) and embryonic germ cells (EGC) from early embryos is a major milestone in modern science and holds a great potential for human medicine. In 2007, Shinia Yamanaka and co-workers reprogrammed somatic cells to pluripotency by induced expression of pluripotency transcription factors. These so-called induced pluripotent stem cells (iPSC) are equivalent to ESC in terms of pluripotency and have the same potential for use in regenerative therapies. However, before the use of pluripotent cells or their derivatives in humans, potential therapies need to be tested in suitable animal models to ensure their safety. In this respect, the domestic pig is particularly suited for the testing of stem cell-based therapies intended for humans, since in general physiology and metabolism are similar in human and pigs. Since the isolation of the different types of pluripotent cells in human and mouse, there have been reports of derivation of ESC-like and EGC-like cell lines from porcine embryos. Despite the significant progress that has been reported in these studies, none of the described porcine cell lines have fulfilled all of the criteria for pluripotency, such as long-term maintenance and the ability to differentiate into all of the cells in the organism, including the germ line. This has prevented the use of these cells in the genetic engineering of livestock as well as their therapeutic application in animal models for human diseases. The derivation of the first porcine cell lines with iPSC characteristics (Ezashi et al. 2009 PNAS 27, 10 993–10 998) has provided a viable alternative to the ESC/EGC, and some major successes have been already achieved. The majority of the putative iPSC described in the literature have demonstrated pluripotent characteristics such as expression of various pluripotency markers and an ability to differentiate into the three primary germ layers in vivo by forming teratomas in immunodeficient mice. One group has reported the derivation of iPSC lines that have been capable to generate chimeras with germline contribution (West et al. 2011 Stem Cells 29, 1640–1643), which is the first fully confirmed report of successfully produced porcine germ line chimera to date. Additionally, the differentiation of putative iPSC into rod photoreceptors and their integration into the retinas of recipient pigs has been reported (Zhou et al. 2011 Stem Cells 29, 972–980). Despite these major achievements, some challenges remain to be overcome in order to make porcine iPSC more widely applicable in disease models and in the transgenic technology. Due to some variations in the morphological and molecular characteristics of the reported putative iPSC lines, it needs to be determined which markers are the hallmarks of truly pluripotent porcine iPSC. Second, it is still not clear which are the optimal culture conditions for derivation and long-term culture of these cells. Since the culture conditions used today have been proven ineffective to maintain pluripotency in porcine ESC and EGC, the question remains whether the continuous expression of the transgenes is an important factor in the long-term culture of iPSC. Finally, it needs to be determined whether putative porcine iPSC derived from cell types other than multipotent stem cells (such as mesenchymal stem cells used by West et al., 2011) possess full pluripotency, which should be demonstrated by germ line chimera production via blastocyst injection or tetraploid complementation.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2588-2588 ◽  
Author(s):  
Louise Roulin ◽  
Ashfaq Ali ◽  
Aline Masse ◽  
Marie-Magdelaine Coudé ◽  
Dominique Bluteau ◽  
...  

Abstract CONTEXT: Eradication of leukemic progenitor cells, defined by functional assays such as long-term culture (leukemic long-term culture initiating cells [L-LTC-IC]) is the goal of therapy in AML. Bromodomain and ExtraTerminal (BET) proteins are epigenetic readers that regulate the expression of genes with super-enhancers, including CMYC. BET inhibitors (BETi) such as JQ1 induce proliferation arrest and apoptosis in murine models of AML, in human AML cell lines and primary blasts. Their activity in human leukemic progenitors has not yet been reported. OTX015 (MK-8626) is an orally available BETi that can be safely administered to patients with a continuous low-dose regimen (Dombret et al. Blood. 2014). Single-dose exposure to OTX015 induces gene expression modulation characteristic of bromodomain inhibition, including downregulation of CMYC and upregulation of HEXIM1, inhibiting the viability of AML cell lines, and inducing apoptosis in primary AML blasts (Coudé et al. Oncotarget. 2015). To address the activity of OTX015 on leukemic progenitors, we analyzed (A) the clonogenicity of AML cell lines and (B) the frequency of primary L-LTC-IC after repeated low-dose exposure to OTX015. METHODS: (A) Five AML cell lines (OTX015 IC50 60 - 10,000 nM) were studied: OCI-AML3, NOMO-1, HL-60, KG1a and K562. After 24h starvation, OTX015 or vehicle (DMSO) was added daily to the culture medium for 3 days at various concentrations. After 96h, cells were assessed for gene expression by RT-qPCR and seeded in methycellulose. Colonies were scored after 14 days. (B) Bone-marrow mononuclear cells (BMNC) from AML patients obtained at diagnosis after informed consent were cultured for three weeks in a niche-like hypoxic milieu shown to maintain leukemic stem cells (Griessinger et al. Stem Cells Transl Med. 2014). OTX015 200 nM or DMSO was added weekly. This concentration is in the range of trough concentrations achievable at the MTD of OTX015 in phase I trials. Residual leukemic cells were sorted and plated on methylcellulose. Colonies were scored after 14 days. The resulting L-LTC-IC frequency was reported relative to the number of BMNC initially seeded. RESULTS: (A) To dissect the effect of OTX015 on AML progenitors from that on the leukemic bulk, we determined for each cell line a maximal OTX015 concentration that could be administered repeatedly for 3 days without significantly impairing proliferation or viability (MTT) at day 4 of culture (referred as low-dose concentration). As expected, this target concentration, ranging from 50 to 500 nM, was lower in cell lines with low OTX015 IC50. This prolonged low-dose exposure to OTX015 recapitulated BETi-associated gene expression changes including CMYC downregulation and HEXIM1 upregulation in all cell lines, and significantly reduced clonogenicity compared to DMSO in 4/5 cell lines, but not in NPM1-mutated OCI-AML3 cells (IC50: 60 nM, target concentration 50 nM), despite modulation of CMYC and HEXIM1 expression. Overall, there was no correlation between the level of CMYC repression and clonogenicity. Transcriptome analyses are ongoing to identify gene expression changes specifically associated with inhibition of clonogenicity. (B) L-LTC-IC frequency after prolonged exposure to 200 nM OTX015 was determined in specimens from 11 AML patients with variable oncogenetics. L-LTC-IC frequency was reduced in 5/11 patients, reaching statistical significance in 3 cases; OTX015 reduced L-L-LTC-IC in 3 of 4 NPM1-mutated samples, but not in any of the 3 patients with high-risk cytogenetics. No clear correlation was found between induction of apoptosis on primary blasts after short-term, and L-LTC-IC reduction after long-term 200nM OTX015 exposure respectively. Patients' samples number is being extended to identify oncogenetic predictors of L-LTC-IC reduction. CONCLUSION: Our results suggest that in AML cell lines or primary samples, prolonged exposure to low concentrations of the clinically-available BET inhibitor OTX015 results in activity against leukemic progenitors independent of induction of proliferation arrest or apoptosis in blasts. Molecular mechanisms and oncogenic markers of this activity are being investigated. These results warrant clinical investigation of the anti-leukemic properties of prolonged low-dose OTX015 administration. Disclosures Riveiro: Oncoethix: Research Funding; OTD: Employment. Herait:Oncoethix: Other: shareholder; Oncoethix: Other: Chief medical officer; Oncoethix: Other: shareholder. Dombret:Oncoethix: Research Funding. Itzykson:Oncoethix: Research Funding.


2011 ◽  
Vol 17 (4) ◽  
pp. 474-497 ◽  
Author(s):  
Monika Nowak-Imialek ◽  
Wilfried Kues ◽  
Joseph W. Carnwath ◽  
Heiner Niemann

AbstractPluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.


2018 ◽  
Vol 30 (1) ◽  
pp. 236 ◽  
Author(s):  
Suyatno ◽  
Y. Kitamura ◽  
N. Minami ◽  
M. Yamada ◽  
H. Imai

Spermatogonial stem cells (SSC) self-renew and differentiate into spermatocytes to produce haploid sperm. Because SSC are a small population of adult stem cells in the testis, numerous studies have been reported to derive cell lines from cultured SSC. It has been reported that neonatal and adult mouse SSC can be cultured in vitro over the long term. Male germline stem (GS) cells, embryonic stem (ES)-like cells, and multipotent male germline stem (MGS) cells were derivated from mouse SSC. However, in domestic species including cattle, information about in vitro culture of SSC is mainly available in the neonatal and immature animal. To our knowledge, there are no reports about long-term culture of SSC isolated from adult bovine testis. In this report, we established culture conditions to maintain SSC isolated from adult and immature testes. The SSC were isolated by 3-step enzymatic digestion and enriched by Percoll gradient centrifugation. For adult testicular cell suspensions, SSC were further enriched by differential plating on precoated gelatin dish. After Percoll gradient centrifugation, we found differential expression of SSC markers (GFRα-1 and UCHL-1) in the isolated cells from immature and adult testis. The RT-PCR results also confirmed the expression of differentiated spermatogonia markers (SYCP3 and STRA-8) in adult testicular cell suspensions. It suggests that isolated testicular germ cell population from adult testis are more heterogeneous than those of immature testis. The SSC isolated from adult testes were cultured in low-serum media containing 6-bromoindirubin-3′-oxime (BIO), an inhibitor of glycogen synthase kinase-3α (GSK3), and subsequently the cultures were maintained in the medium containing glial cell line-derived neurotropic factor (GDNF). The cell lines have characteristics resembling mouse GS cell lines as confirmed by their grape-like shape morphology, the expression of SSC markers (UCHL-1, DBA, and GFRa-1), and pluripotent stem cell markers (POU5F1, SOX2, KLF4). The SSC from immature testes were proliferated for more than 3 months in serum-free culture conditions in the presence of GDNF and bovine leukemia inhibitory factor (LIF). The cell lines had ES-like cell morphology, expressed pluripotent stem cell markers and SSC-specific markers. They differentiated in vitro into 3 germ layers confirmed by the expression of ectoderm (NESTIN), mesoderm (BMP4), and endoderm (GATA-6) markers by RT-PCR and neuron like-cells confirmed by the expression of glial fibrillary acidic protein (GFAP) by immunofluorescence analysis. In conclusion, these findings indicate an efficient method to enrich SSC without cell sorting method and different long-term culture systems subsequently established to maintain SSC from adult and immature testes. Furthermore, our data would be useful for further studies that aim to preserve endangered species and improve livestock production through genome editing technology.


2017 ◽  
Vol 8 (6) ◽  
pp. 1675-1688 ◽  
Author(s):  
Jamie Trott ◽  
Ee Kim Tan ◽  
Sheena Ong ◽  
Drew M. Titmarsh ◽  
Simon L.I.J. Denil ◽  
...  

2018 ◽  
Vol 30 (1) ◽  
pp. 233
Author(s):  
P. Setthawong ◽  
P. Phakdeedindan ◽  
M. Techakumphu ◽  
T. Tharasanit

Induced pluripotent stem cells (iPS cells) are generated by reprogramming of somatic cells using ectopic introduction of 4 transcription factors, including OCT4, SOX2, KLF4, and c-MYC (OSKM). Fibroblast cells are the most commonly used as a primary cell source for iPS cells because they are easy to harvest and culture. However, reprogramming efficiency of porcine fibroblasts is poor (~0.1%). During reprogramming process, mixed populations of primary colonies become the major obstacle in iPS establishment. In this study, we characterised 2 different colony morphologies at colony pick-up (compact and loose iPS morphology). We hypothesised that compact colonies will proceed to long-term culture and pluripotency. The fibroblast cells were isolated from tails of piglets and transfected with retroviral vectors expressing OSKM. The primary colonies were counted on Day 7 after gene transduction. The iPS-like colonies were divided into compact (n = 10) and loose (n = 10) morphology at colony pick-up. The characteristics of iPS-like cell lines were analysed by morphology, alkaline phosphatase staining, G-banding karyotype, immunofluorescence staining (OCT4), pluripotent gene expression (RT-PCR), and embryoid body formation. A total of 1,697 iPS-like colonies (2.34%) were observed. The compact colonies contained with tightly packed cells with distinct border between iPS colony and feeder cells, while colonies with irregular shape and border were classified as loose colonies. These 2 types of iPS-like colonies expressed alkaline phosphatase and OCT4. A total 5 of 10 (50%) compact morphology cell lines could be maintained in the undifferentiated state for more than 50 passages. But only 3 of 10 (30%) loose morphology cell lines demonstrated pluripotent characteristics. G-Banding karyotype analysis revealed normal chromosome number (n = 38). All of the cell lines also expressed endogenous pluripotent genes, including OSKM and NANOG and formed three-dimensional aggregating masses. In this study, we found that the cell lines from compact morphology could be maintained for longer than those of the loose morphology. A high rate of differentiation of loose iPS colony may also indicate that this type of colony has different pluripotency signals or incomplete reprogramming compared with compact colony. In conclusion, selection of compact colony morphology at colony pick-up is simple and reflects long-term propagation of porcine iPS cell lines. This information is important for improving the success rate of establishment and maintenance of porcine iPS cells.


Sign in / Sign up

Export Citation Format

Share Document