83 IMPROVED SURVIVAL TO ONE-STEP REHYDRATION OF VITRIFIED - WARMED VERSUS FROZEN - THAWED IN VITRO-PRODUCED BOVINE BLASTOCYSTS

2013 ◽  
Vol 25 (1) ◽  
pp. 189
Author(s):  
B. Trigal ◽  
E. Gómez ◽  
J. N. Caamaño ◽  
M. Muñoz ◽  
E. Correia ◽  
...  

Vitrification allows cryopreservation of embryos while avoiding the detrimental effects derived from the intracellular ice formation during slow freezing. However, while slow freezing allows direct transfer of embryos, vitrification usually requires 1 or 2 rehydration steps after warming. The aim of this work was to analyze survival rates and quality of vitrified or slow frozen in vitro-produced (IVP) embryos, after warming/thawing by one-step procedures. Bovine blastocysts were produced in vitro, and on Day 7 and 8 excellent- and good-quality expanded blastocysts were selected for slow freezing (n = 175) or vitrification (n = 176) in 4 replicates. Slow freezing was performed in phosphate buffered saline containing ethylene glycol (1.5 M) and sucrose (0.1 M). Embryos were placed in a Biocool chamber (Biocool II, FTS® Systems Inc.) at –7°C for 5 min and seeded. After 5 min, embryos were cooled at –0.3°C min–1 until –32°C and plunged in LN2. Embryos were thawed in a water bath at 37°C for 30 s. Vitrification was performed in fibreplugs as previously described (Trigal et al. 2012 Theriogenology 10.1016/j.theriogenology.2012.06.018). For warming, embryos were incubated for 5 min in TCM199–HEPES, 20% FCS, and 0.25 M sucrose. Thawed and warmed embryos were washed and subsequently cultured in mSOFaaci + 6 g L–1 BSA + 10% FCS for 48 h. Re-expansion (RE) (at 2, 24, and 48 h in culture) and hatching rates (HR; at 24 and 48 h in culture) were recorded. Total cells were counted in blastocysts that hatched at 24 and 48 h after fixation and bisbenzimide staining. Data were analyzed by ANOVA and are presented as least squares means ± standard error. No differences were found within RE at 2 and 24 h, and HR at 24 h (2-h RE: 94.1 ± 4.9 v. 95.4 ± 4.9; 24-h RE: 92.6 ± 4.9 v. 94.5 ± 4.9; HR: 21.0 ± 7.0 v. 20.6 ± 7.0, for slow frozen and vitrified embryos, respectively; P > 0.05). However, at 48 h, vitrified embryos hatched at higher rates than did slow-frozen embryos (53.6 ± 10.2 v. 32.5 ± 10.2; P < 0.05). Vitrified embryos (143.5 ± 12.7) had higher (P < 0.05) cell numbers than did slow-frozen embryos (106.1 ± 9.6) after hatching. Our results show that vitrification of IVP embryos in fibreplugs followed by a one-step warming is a promising candidate procedure to replace slow freezing for direct transfer on field. These results must be completed with embryo transfers to analyze pregnancy rates. RTA2011-00090 (FEDER-INIA) is acknowledged. Muñoz, Trigal, and Correia are sponsored by RYC08-03454, Cajastur, and FPU2009-5265, respectively.

2015 ◽  
Vol 27 (1) ◽  
pp. 166
Author(s):  
S. H. Kizil ◽  
M. Satilmis ◽  
N. Akyol ◽  
T. Karasahin

The objective of this study was to search for capability of freezing by ethylene glycol direct transfer method of in vitro-produced cattle embryos. Fifty-six in vitro-produced good-quality cow embryos were frozen by direct transfer method with ethylene glycol in this study. Cattle ovaries were collected from a slaughterhouse and oocytes were aspirated from follicles with 2 to 8 mm diameters. Then oocytes were let for maturation of 20 to 22 h in 100-μL microdroplets of TCM-199 with 0.1 mM β-mercaptoethanol and 20% FCS. After 5 to 6 h of fertilization in Bracket Oliphant (BO), they were cultured for 7 days in 100 µL of CR1aa medium with 5% FCS under 5% CO2, 98% relative humidity, and 38.5°C in a CO2 incubator. Embryos were equilibrated for 15 min in room temperature in 1.8 M ethylene glycol + 0.1 M sucrose in Dulbecco's phosphate buffered saline (D-PBS) supplemented with 20% FCS. Embryos were then loaded individually into a 0.25-mL straw and placed directly into a cooling chamber of a programmable freezer with methyl alcohol precooled to –7°C. After 2 min, the straw was seeded and maintained at –7°C for 8 min more. Then it was cooled to –30°C at 0.3°C min–1 before plunging into liquid nitrogen. The frozen embryos were thawed by allowing the straw to stand in air for 5 to 6 s and then immersing them in a 30°C water bath for 10 s. After thawing, embryos were transferred into TCM-199 + 0.1 mM β-mercaptoethanol + 20% FCS medium to check in vitro survival rates at 48 h post-thawing. The re-expansion and hatching rate of blastocysts was 64.28% (36 blastocysts). This result indicated that ethylene glycol can be used effectively for cow embryo freezing as a suitable cryoprotectant for direct transfer method.


2005 ◽  
Vol 17 (2) ◽  
pp. 199 ◽  
Author(s):  
B. Peachey ◽  
K. Hartwich ◽  
K. Cockrem ◽  
A. Marsh ◽  
A. Pugh ◽  
...  

Vitrification has become the method of choice for the preservation of in vitro derived embryos of a number of species, and several methods of vitrification have been developed. One such method, the cryoLogic vitrification method (CVM) yields high survival rates of warmed embryos (Lindemans W et al. 2004 Reprod. Fertil. Dev. 16, 174 abst). In this study, the post-warm viability of bovine IVP embryos following either vitrification using CVM or slow freezing using ethylene glycol (EG) was compared. In addition, the survival of embryos following triple transfer to synchronized recipients was measured and the embryo (“e”) and recipient (“r”) contributions to embryo survival was determined using the “er” model for embryo survival (McMillan WH et al. 1998 Theriogenology 50, 1053–1070). Bovine IVP methods were those of van Wagtendonk et al. 2004 Reprod. Fertil. Dev. 16, 214 (abst). On day 7 of culture (Day 0 = IVF), Grade 1 and 2 embryos that had reached at least the late morula stage were selected for vitrification (20% DMSO, 20% ethylene glycol) or freezing in 1.5 M ethylene glycol + 0.1 M sucrose (0.5°C/min to −35°C). Following storage in LN2 for at least 24 h the embryos were thawed, the cryoprotectant removed, and the embryos cultured for 72 h in mSOF medium under 5% CO2, 7% O2, 88% N2. The number of hatching embryos was recorded at 24-h intervals. In addition, blastocyst and expanded blastocyst embryos were thawed and immediately transferred nonsurgically to recipients (three embryos of the same grade to each recipient) on Day 7 of a synchronized cycle (Day 0 = heat). The recipients were ultrasound-scanned for the presence of, and number of, fetuses on Days 35 and 62, respectively. The invitro assessment of 148 CVM and 230 EG frozen embryos indicated that more vitrified than EG embryos hatched by 72 h (73% vs. 62%; CVM vs. EG, χ2 = 4.5, P < 0.05). Overall, more Grade 1 embryos hatched than Grade 2 (74% vs. 60%, χ2 = 7.2, P < 0.01). CVM embryos (105) were triple-transferred to 35 recipients, and EG embryos (30) were triple-transferred to 10 recipients. Recipient pregnancy rates at Day 62 were 80% and 70%, respectively. Overall embryo survival was 38.5% (41% for CVM and 30% for EG). The overall calculated “e” and “r” values were 0.39 and 1.0 (“e”: 0.42 and 1.0, and “r”: 0.31 and 1.0, respectively, CVM and EG groups). Survival rates of CVM embryos to Day 62 (41%) were slightly lower than that previously obtained for fresh embryos produced using an identical IVP procedure (44% – van Wagtendonk AM 2004).


2013 ◽  
Vol 25 (1) ◽  
pp. 182
Author(s):  
R. Morató ◽  
T. Mogas

Although slow freezing continues to be the most widely used technique of cryopreservation for bovine in vivo- and in vitro-produced embryos, vitrification has been tested in different species with good results, especially when dealing with in vitro-produced embryos. Vitrification represents a minor expense in time and equipment associated with cryopreservation compared with conventional slow freezing. However, vitrification, which is the most common method for human embryo cryopreservation, has not been widely adopted by embryo-transfer practitioners for commercial use in cattle. In general, vitrification requires gradual cryoprotectant dilution in a laboratory setting, and it is difficult to perform in the field. The objective of this study was to develop a one-step dilution method suitable for one-step bovine embryo transfer using the cryotop vitrification method. Embryos produced in vitro by standard procedures were vitrified at the blastocyst stage at Day 7 post-insemination in a mixture of 15% ethylene glycol + 15% dimethyl sulfoxide + 0.5 M sucrose using cryotop devices. Embryos were randomly assigned to 1 of 3 warming methods: (1) W3: warming was carried out following the cryotop method (1 M sucrose for 1 min, 0.5 M sucrose for 3 min, and 0 M sucrose for 6 min); (2) W1/0.5: embryos were warmed directly in 0.5 M sucrose for 3 min; and (3) W1/0: embryos were warmed directly in 0 M sucrose for 5 min. Survival rates were assessed in terms of blastocyst re-expansion, hatching, and hatched status at 3 and 24 h after warming. Data were analyzed using the statistical analysis systems package (SAS, v9.1). Data from at least 3 replicates were collected. Comparisons of vitrified–warmed blastocyst survival rates between groups were performed using the chi-squared test. The level of statistical significance was set at P < 0.05. When embryo survival was evaluated at 3 h postwarming, embryos warmed using the 3-step dilution protocol and those warmed directly in 0.5 M sucrose showed higher percentages of survival (W3: 89.8%, n = 98; W1/0.5: 87.5%, n = 64; P < 0.05) than those blastocysts that were warmed directly in 0 M sucrose (W1/0: 66.4%, n = 146). However, similar rates irrespective of the warming procedure were observed at 24 h postwarming (W3: 85.7%, W1/0.5: 88.2%, W1/0: 70.5%). Warmed in vitro-produced embryos exposed to W3 (47.6%) and W1/0.5 (35.6%) achieved higher percentages of embryos developing to the hatched blastocyst stage after 24 h of culture than those embryos warmed in W1/0 (20.4%; P < 0.05). Our results indicate that direct warming and dilution of cyotop-vitrified embryos in 0.5 M sucrose for 3 min may enable one-step bovine embryo transfer without requirement of a microscope or other laboratory equipment, simplifying the embryo-transfer procedure of vitrified embryos on farm at the same level of complexity as carrying out AI. Support came from Spanish MEC (RZ2010-00015-0-00; AGL2010-19069) and Generalitat de Catalunya (2009 SGR 621).


2022 ◽  
Vol 34 (2) ◽  
pp. 250
Author(s):  
H. Álvarez-Gallardo ◽  
M. Kjelland ◽  
M. Pérez-Martínez ◽  
A. Velázquez-Roque ◽  
F. Villaseñor-González ◽  
...  

2020 ◽  
Author(s):  
Iris Martínez-Rodero ◽  
Tania García-Martínez ◽  
Erika Alina Ordóñez-León ◽  
Meritxell Vendrell-Flotats ◽  
Carlos Olegario-Hidalgo ◽  
...  

Abstract Background VitTrans is a device that enables the vitrification and warming/dilution of in vitro produced bovine embryos followed by their direct transfer to recipient females in field conditions. This study sought to improve the VitTrans method by comparing two equilibration times: short (SE: 3 min) and long (LE: 12 min). Outcome measures recorded in vitrified D7 and D8 expanded blastocysts were survival and hatching rates, differential cell counts, apoptosis rate and gene expression. Results While survival rates at 3 h and 24 h post-warming were reduced (P < 0.05) after vitrification, hatching rates of D7 embryos vitrified after SE were similar to those obtained in fresh non-vitrified blastocysts. Hatching rates of vitrified D8 blastocysts were lower (P < 0.05) than of fresh controls, regardless of treatment. Total cell counts, and inner cell mass and trophectoderm cell numbers were similar in hatched blastocysts derived from D7 blastocysts vitrified after SE and fresh blastocysts, while vitrified D8 blastocysts yielded lower values, regardless of treatment. The rate of apoptotic cells was significantly higher in both treatment groups when compared to fresh controls, although apoptosis rates were lower using the SE than LE protocol. No differences emerged in expression of the genes BAX, AQP3, CX43 and IFNτ between blastocysts vitrified after SE or LE, whereas a significantly higher abundance of BCL2L1 and SOD1 transcripts was observed in blastocysts vitrified after SE compared to LE. Conclusions The VitTrans device combined with a shorter exposure to the equilibration medium improves vitrification/warming outcomes facilitating the direct transfer of vitrified embryos under field conditions.


2008 ◽  
Vol 20 (1) ◽  
pp. 143
Author(s):  
J. Fukuhara ◽  
T. Takuma ◽  
S. Kasa ◽  
K. Imai

The aim of this work is to investigate the effect of assisted hatching (AH) by partial zona pellucida (ZP) dissection on the survival and the development of bovine IVP embryos after ultra-rapid vitrification and slow freezing. COC obtained from abattoir bovine ovaries were matured and fertilized in vitro, and then cultured in IVD101 (Research Institute for the Functional Peptides, Yamagata, Japan) at 38.5�C in 5% CO2, 5% O2, 90% N2. The treatment of AH was done on compacted morulae by partially dissecting ZP with a micromanipulator. As a control, non-treated embryos with intact ZP were used. For vitrification, the blastocysts at days 7 and 8 were placed into a vitrification solution (Dulbecco's PBS (D-PBS) supplemented with 20% glycerol, 20% ethylene glycol (EG), 0.3 m sucrose (SUC), 0.3 m xylose, and 3% polyethylene glycol) for 30 s after two-step equilibration. Then, they were immediately placed on a custom-made vitrification tool made of nylon fishing line with a small piece of iron attached to one end (V-tool), and immersed into liquid nitrogen (LN2). After cooling, the embryos on the V-tool were placed into frozen 0.25 mL straws filled with a diluting solution (D-PBS supplemented with 0.5 m SUC and 20% new born calf serum) using a magnet, and then they were preserved in LN2. For warming, the straws were immersed into 25�C water. The V-tool was then introduced into the column of diluting solution using a magnet. For freezing, the blastocysts at days 7 and 8 were frozen by the conventional procedure with 10% EG. For thawing, the straws were immersed into 30�C water. In this study, 120 embryos were vitrified and 128 embryos were frozen. Warmed and thawed embryos were washed more than two times, and cultured in TCM199 supplemented with 20% fetal bovine serum and 0.1 mm β-mercaptoethanol for 72 h for assessment of survivability and developmental capacity of post-thaw embryos. Data were analyzed with the chi-square test. The survival rates of vitrified embryos were the same with or without AH (81.1 and 82.0%, P > 0.05). The survival rates of frozen embryos were also the same with or without AH (76.3 and 66.7%, P > 0.05). The survival rates of vitrified embryos without AH was significantly higher than that of frozen embryos without AH (82.0 v. 66.7%, P < 0.05). The hatched rates of frozen embryos without AH were significantly lower than that of frozen embryos with AH and those of vitrified embryos with and without AH (43.5 v. 64.4%, 67.9 and 68.9%, P < 0.05). These results indicated that AH enhanced the development of frozen bovine IVP embryos and that our vitrification method using a V-tool did not require AH for development of embryos.


2016 ◽  
Vol 28 (2) ◽  
pp. 227
Author(s):  
M. Nõmm ◽  
E. Mark ◽  
O. Sarv ◽  
S. Kõks ◽  
Ü. Jaakma

Over a few decades the bovine in vitro embryo production (IVP) systems have been improving rapidly. Still, the goal to produce the same quality embryos in vitro as in vivo has not yet been reached. The FCS is usually added to media during IVP to provide growth factors and energy sources. Currently, serum-free culture systems are often preferred due to the lower risk of contamination and prevention of the development of large offspring syndrome. The aim of this study was to establish whether complete elimination of FCS from the bovine IVP system has an effect on blastocyst rates, embryo quality, and embryo survival rates after slow freezing. We replaced our conventional in vitro maturation (IVM) medium [tissue culture medium-199, 10% (v/v) FCS, 10 µg mL–1 epidermal growth factor (EGF), 1500 U mL–1 serum gonadotropin and chorionic gonadotropin (PG600), Na-pyruvate 0.5 mM, gentamycin sulfate 50 µg mL–1 and l-glutamine 1 mM] with SOF (SOFaaci) supplemented with 0.4% fatty acid-free BSA fraction V, 10 µg mL–1 EGF, and 1500 U mL–1 PG600. Matured cumulus-oocyte complexes (COC) from both experimental groups (total of 1145 from serum-free IVP and 687 from our conventional IVP system) were used for in vitro fertilisation and culture. Blastocyst rates were similar in the serum-free and our usual IVP protocol, 18 and 22%, respectively. Seventy-seven Grade 1 (according to IETS) Day 7 blastocysts from the serum-free IVP system and 80 Grade 1 Day 7 blastocysts from our conventional IVP system were frozen in 1.5 M ethylene glycol and 0.1 M sucrose containing cryopreservation medium. The post-thaw survival rates after 24 h of culture and evaluated as percentages of re-expanded embryos were 63.6% for the serum-free IVP and 46.3% for the conventional IVP system (P < 0.05, Z Test for 2 population proportions). These results indicate that it is possible to have a completely serum-free bovine IVP system and based on the slow freezing and thawing results the quality of serum-free IVP embryos might be better than of the embryos matured in our conventional maturation media. However, more experiments and increased sample sizes are needed to confirm the results. This study was supported by Project 3.2.0701.12–0036 of Archimedes Foundation, AP 2.4 of CCRMB, and institutional research funding (IUT 08–01) of the Estonian Ministry of Education and Research.


1998 ◽  
Vol 49 (1) ◽  
pp. 170 ◽  
Author(s):  
M.W. Lane ◽  
T.J. Ahern ◽  
I.M. Lewis ◽  
D.K. Gardner ◽  
T.T. Peura

2020 ◽  
Vol 36 (3) ◽  
pp. 251-270
Author(s):  
Van Do ◽  
Andrew Taylor-Robinson

The goal of cryopreservation is to retain the original stage of gametes and embryos after they have endured cooling and warming. Slow freezing is a standard method for in vivo-derived bovine embryo cryopreservation, threefifths of such embryos being frozen by this method globally. However, it is evident that slow freezing is not efficient for cryopreserving in vitro-produced bovine embryos. Hence, only one-third of in vitro-produced bovine embryos are cryopreserved. Vitrification is a preferred method for storage of human embryos; consequently, it has been explored as a novel means to store in vitro-produced bovine embryos, for which it shows considerable promise as an alternative to slow freezing. This is due to several reasons: vitrification is often less time-consuming than slow freezing; it does not need expensive slow rate freezing machines; and it has been proven to have comparatively higher survival rates. Yet, in the cattle industry vitrification continues to present shortcomings, such as possible toxicity of vitrification solutions and failure to standardize methods, which pose a challenge for its application to in vitro-produced bovine embryos. Therefore, determining the most suitable procedure is crucial to make vitrification more practical in commercial settings.


2020 ◽  
Vol 146 ◽  
pp. 39-47 ◽  
Author(s):  
Enrique Gómez ◽  
Susana Carrocera ◽  
David Martín ◽  
Juan José Pérez-Jánez ◽  
Javier Prendes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document