193 IMPROVED POST-THAW SURVIVAL OF BOVINE EMBRYOS PRODUCED IN SERUM-FREE IN VITRO PRODUCTION SYSTEM

2016 ◽  
Vol 28 (2) ◽  
pp. 227
Author(s):  
M. Nõmm ◽  
E. Mark ◽  
O. Sarv ◽  
S. Kõks ◽  
Ü. Jaakma

Over a few decades the bovine in vitro embryo production (IVP) systems have been improving rapidly. Still, the goal to produce the same quality embryos in vitro as in vivo has not yet been reached. The FCS is usually added to media during IVP to provide growth factors and energy sources. Currently, serum-free culture systems are often preferred due to the lower risk of contamination and prevention of the development of large offspring syndrome. The aim of this study was to establish whether complete elimination of FCS from the bovine IVP system has an effect on blastocyst rates, embryo quality, and embryo survival rates after slow freezing. We replaced our conventional in vitro maturation (IVM) medium [tissue culture medium-199, 10% (v/v) FCS, 10 µg mL–1 epidermal growth factor (EGF), 1500 U mL–1 serum gonadotropin and chorionic gonadotropin (PG600), Na-pyruvate 0.5 mM, gentamycin sulfate 50 µg mL–1 and l-glutamine 1 mM] with SOF (SOFaaci) supplemented with 0.4% fatty acid-free BSA fraction V, 10 µg mL–1 EGF, and 1500 U mL–1 PG600. Matured cumulus-oocyte complexes (COC) from both experimental groups (total of 1145 from serum-free IVP and 687 from our conventional IVP system) were used for in vitro fertilisation and culture. Blastocyst rates were similar in the serum-free and our usual IVP protocol, 18 and 22%, respectively. Seventy-seven Grade 1 (according to IETS) Day 7 blastocysts from the serum-free IVP system and 80 Grade 1 Day 7 blastocysts from our conventional IVP system were frozen in 1.5 M ethylene glycol and 0.1 M sucrose containing cryopreservation medium. The post-thaw survival rates after 24 h of culture and evaluated as percentages of re-expanded embryos were 63.6% for the serum-free IVP and 46.3% for the conventional IVP system (P < 0.05, Z Test for 2 population proportions). These results indicate that it is possible to have a completely serum-free bovine IVP system and based on the slow freezing and thawing results the quality of serum-free IVP embryos might be better than of the embryos matured in our conventional maturation media. However, more experiments and increased sample sizes are needed to confirm the results. This study was supported by Project 3.2.0701.12–0036 of Archimedes Foundation, AP 2.4 of CCRMB, and institutional research funding (IUT 08–01) of the Estonian Ministry of Education and Research.

2015 ◽  
Vol 27 (1) ◽  
pp. 136
Author(s):  
M. Hoelker ◽  
A. Kassens ◽  
E. Held ◽  
C. Wrenzycki ◽  
U. Besenfelder ◽  
...  

The in vitro production (IVP) of bovine embryos is a well-established technique that has been available for nearly 20 years. However, there remain major differences between IVP-derived blastocysts and their in vivo-derived counterparts. Many studies have pointed out that most of these differences are due to the in vitro developmental environment. To circumvent these negative effects due to in vitro culture conditions, a new method – intrafollicular oocyte transfer (IFOT) – was established in the present study. Using modified ovum pick-up (OPU) equipment, in vitro-matured oocytes derived from slaughterhouse ovaries were injected into the dominant preovulatory follicle of synchronised heifers (follicular recipients) enabling subsequent ovulation, in vivo fertilization, and in vivo development. A total of 810 in vitro-matured oocytes were transferred into 14 heifers. Subsequently, 222 embryos (27.3%) were recovered after uterine flushing at Day 7. Based on the number of cleaved embryonic stages, 64.2% developed to the blastocyst stage, which did not differ from the IVP-derived embryos (58.2%). Interestingly, lipid content of IFOT-derived blastocysts did not differ from the fully in vivo-produced embryos, whereas IVP-derived blastocysts showed significantly higher lipid droplet accumulation compared with fully in vivo-derived and IFOT-derived blastocysts (P < 0.05). Accordingly, IFOT blastocysts showed significantly higher survival rates after cryopreservation than complete IVP-derived embryos (77% v. 10%), which might be attributed to a lower degree of lipid accumulation. In agreement, transfer of frozen-thawed IFOT blastocysts to synchronized recipients (uterine recipients) resulted in much higher pregnancy rates compared with transfer of IVP-derived blastocysts (42.1 v. 13.8%) but did not differ from frozen-thawed ex vivo blastocysts (52.4%). Of these presumed IFOT pregnancies, 7 went to term, and microsatellite analysis confirmed that 5 calves were indeed derived from IFOT, whereas 2 were caused by fertilization of the follicular recipient's own oocyte after AI. Taken together, IFOT-derived blastocysts closely resemble in vivo-derived blastocysts, confirming earlier suggestions that the ability to develop to the blastocyst stage is already determined in the matured oocyte, whereas the quality in terms of lipid content and survival rate after cryopreservation is affected by the environment thereafter. However, to the best of our knowledge, this is the first study reporting healthy calves after intrafollicular transfer of in vitro-matured oocytes.


2020 ◽  
Vol 36 (3) ◽  
pp. 251-270
Author(s):  
Van Do ◽  
Andrew Taylor-Robinson

The goal of cryopreservation is to retain the original stage of gametes and embryos after they have endured cooling and warming. Slow freezing is a standard method for in vivo-derived bovine embryo cryopreservation, threefifths of such embryos being frozen by this method globally. However, it is evident that slow freezing is not efficient for cryopreserving in vitro-produced bovine embryos. Hence, only one-third of in vitro-produced bovine embryos are cryopreserved. Vitrification is a preferred method for storage of human embryos; consequently, it has been explored as a novel means to store in vitro-produced bovine embryos, for which it shows considerable promise as an alternative to slow freezing. This is due to several reasons: vitrification is often less time-consuming than slow freezing; it does not need expensive slow rate freezing machines; and it has been proven to have comparatively higher survival rates. Yet, in the cattle industry vitrification continues to present shortcomings, such as possible toxicity of vitrification solutions and failure to standardize methods, which pose a challenge for its application to in vitro-produced bovine embryos. Therefore, determining the most suitable procedure is crucial to make vitrification more practical in commercial settings.


2005 ◽  
Vol 17 (2) ◽  
pp. 199 ◽  
Author(s):  
B. Peachey ◽  
K. Hartwich ◽  
K. Cockrem ◽  
A. Marsh ◽  
A. Pugh ◽  
...  

Vitrification has become the method of choice for the preservation of in vitro derived embryos of a number of species, and several methods of vitrification have been developed. One such method, the cryoLogic vitrification method (CVM) yields high survival rates of warmed embryos (Lindemans W et al. 2004 Reprod. Fertil. Dev. 16, 174 abst). In this study, the post-warm viability of bovine IVP embryos following either vitrification using CVM or slow freezing using ethylene glycol (EG) was compared. In addition, the survival of embryos following triple transfer to synchronized recipients was measured and the embryo (“e”) and recipient (“r”) contributions to embryo survival was determined using the “er” model for embryo survival (McMillan WH et al. 1998 Theriogenology 50, 1053–1070). Bovine IVP methods were those of van Wagtendonk et al. 2004 Reprod. Fertil. Dev. 16, 214 (abst). On day 7 of culture (Day 0 = IVF), Grade 1 and 2 embryos that had reached at least the late morula stage were selected for vitrification (20% DMSO, 20% ethylene glycol) or freezing in 1.5 M ethylene glycol + 0.1 M sucrose (0.5°C/min to −35°C). Following storage in LN2 for at least 24 h the embryos were thawed, the cryoprotectant removed, and the embryos cultured for 72 h in mSOF medium under 5% CO2, 7% O2, 88% N2. The number of hatching embryos was recorded at 24-h intervals. In addition, blastocyst and expanded blastocyst embryos were thawed and immediately transferred nonsurgically to recipients (three embryos of the same grade to each recipient) on Day 7 of a synchronized cycle (Day 0 = heat). The recipients were ultrasound-scanned for the presence of, and number of, fetuses on Days 35 and 62, respectively. The invitro assessment of 148 CVM and 230 EG frozen embryos indicated that more vitrified than EG embryos hatched by 72 h (73% vs. 62%; CVM vs. EG, χ2 = 4.5, P < 0.05). Overall, more Grade 1 embryos hatched than Grade 2 (74% vs. 60%, χ2 = 7.2, P < 0.01). CVM embryos (105) were triple-transferred to 35 recipients, and EG embryos (30) were triple-transferred to 10 recipients. Recipient pregnancy rates at Day 62 were 80% and 70%, respectively. Overall embryo survival was 38.5% (41% for CVM and 30% for EG). The overall calculated “e” and “r” values were 0.39 and 1.0 (“e”: 0.42 and 1.0, and “r”: 0.31 and 1.0, respectively, CVM and EG groups). Survival rates of CVM embryos to Day 62 (41%) were slightly lower than that previously obtained for fresh embryos produced using an identical IVP procedure (44% – van Wagtendonk AM 2004).


2009 ◽  
Vol 21 (3) ◽  
pp. 489 ◽  
Author(s):  
W. Zeng ◽  
A. K. Snedaker ◽  
S. Megee ◽  
R. Rathi ◽  
F. Chen ◽  
...  

Grafting of immature mammalian testis tissue to mouse hosts can preserve the male germline. To make this approach applicable to a clinical or field situation, it is imperative that the testis tissue and/or spermatozoa harvested from grafted tissue are preserved successfully. The aim of the present study was to evaluate protocols for the preservation of testis tissue in a porcine model. Testis tissue was stored at 4°C for short-term preservation or cryopreserved by slow-freezing, automated slow-freezing or vitrification for long-term storage. Preserved tissue was transplanted ectopically to mouse hosts and recovered xenografts were analysed histologically. In addition, spermatozoa were harvested from xenografts and cryopreserved. Total cell viability and germ cell viability remained high after tissue preservation. Complete spermatogenesis occurred in xenografts preserved by cooling up to 48 h, whereas spermatogenesis progressed to round spermatids in the xenografts that were frozen–thawed before grafting. Approximately 50% of spermatozoa harvested from xenografts remained viable after freezing and thawing. The in vivo developmental potential of cryopreserved tissue was reduced despite high post-thaw viability. Therefore, it is important to evaluate germ cell differentiation in vivo in addition to cell viability in vitro when optimising freezing protocols for testis tissue.


Reproduction ◽  
2004 ◽  
Vol 127 (5) ◽  
pp. 557-568 ◽  
Author(s):  
F K Hollinshead ◽  
G Evans ◽  
K M Evans ◽  
S L Catt ◽  
W M C Maxwell ◽  
...  

The characteristics and functional capacity of ram spermatozoa frozen–thawed prior to and after flow cytometric sorting was assessed after incubation (37 °C; 6 h),in vitrofertilisation (IVF), and transfer of fresh and vitrifiedin vitroproduced embryos. Frozen-thawed spermatozoa from two rams were allocated to four treatment groups: (i) non-sorted (Control); (ii) sorted (FS); (iii) sorted then re-frozen (FSF) and (iv) re-frozen control (FCF). Frozen-thawed samples were separated into X- and Y-chromosome bearing spermatozoa using a high-speed sperm sorter after density gradient centrifugation (X: 88 ± 1.5% and Y: 87 ± 1.1% purity). After 6 h incubation (37 °C), the percentage of motile spermatozoa was higher (P< 0.001) for FS (84 ± 2.0%) compared with all other treatments (Control: 36 ± 3.3%, FSF: 28 ± 3.1%, FCF: 20 ± 2.0%). In a sperm migration test greater numbers of FS spermatozoa penetrated 5 mm into the artificial cervical mucus compared with spermatozoa from all other treatments (152 ± 39.4 vs 31 ± 9.2 spermatozoa respectively;P< 0.05). Fertilisation and cleavage rates were higher (P< 0.05) forin vitromatured oocytes inseminated with Control compared with FSF spermatozoa. However, the Day 7 blastocyst development rate was higher for oocytes inseminated with FSF (62.2%) than FS and Control spermatozoa (52.7 and 50.0%;P< 0.05). The number of ewes pregnant (Day 60), lambing and thein vivoembryo survival rate was greater (P< 0.01) after the transfer of fresh embryos rather than vitrified embryos derived from X- and Y-spermatozoa (67.6, 64.7 and 41.2% vs 29.6, 25.9 and 14.8% respectively). Twenty-six of the 30 (86.7%) lambs derived from sex-sorted spermatozoa were of the correct sex. These results demonstrate that frozen–thawed ram spermatozoa can be sex-sorted for immediate or future use after re-cryopreservation and, in conjunction with IVF and embryo transfer, can be used to efficiently produce offspring of pre-determined sex.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Alejandro González-Plaza ◽  
Inmaculada Parrilla ◽  
...  

Despite the reported promising farrowing rates after non-surgical and surgical transfers of vitrified porcine morulae and blastocysts produced in vivo (range: 70–75%), the pregnancy loss is 5–15 fold higher with vitrified than with fresh embryos. The present study aimed to investigate whether vitrification affects the transcriptome of porcine morulae, using microarrays and RT-qPCR validation. Morulae were obtained surgically from weaned sows (n = 13) on day 6 (day 0 = estrus onset). A total of 60 morulae were vitrified (treatment group). After 1 week of storage, the vitrified morulae were warmed. Vitrified-warmed and non-vitrified fresh morulae (control; n = 40) were cultured for 24 h to assess embryo survival by stereomicroscopy after. A total of 30 vitrified/warmed embryos that were deemed viable and 30 fresh control embryos (three pools of 10 for each experimental group) were selected for microarray analysis. Gene expression was assessed with a GeneChip® Porcine Genome Array (Affymetrix). An ANOVA analysis p-unadjusted &lt;0.05 and a fold change cut-off of ±1.5 were set to identify differentially expressed genes (DEGs). Data analysis and biological interpretation were performed using the Partek Genomic Suite 7.0 software. The survival rate of morulae after vitrification and warming (92.0 ± 8.3%) was similar to that of the control (100%). A total of 233 DEGs were identified in vitrified morulae (38 upregulated and 195 downregulated), compared to the control group. Nine pathways were significantly modified. Go-enrichment analysis revealed that DEGs were mainly related to the Biological Process functional group. Up-regulated DEGs were involved in glycosaminoglycan degradation, metabolic pathways and tryptophan metabolism KEGG pathways. The pathways related to the down-regulated DEGs were glycolysis/gluconeogenesis, protein export and fatty acid elongation. The disruption of metabolic pathways in morulae could be related to impaired embryo quality and developmental potential, despite the relatively high survival rates after warming observed in vitro. In conclusion, vitrification altered the gene expression pattern of porcine morulae produced in vivo, generating alterations in the transcriptome that may interfere with subsequent embryo development and pregnancy after embryo transfer.


2004 ◽  
Vol 16 (2) ◽  
pp. 182
Author(s):  
B. Shangguan ◽  
N. Yang ◽  
R. Vanderwal ◽  
M.D. Darrow

Arabinogalactan (AG) in combination with 1.5M ethylene glycol (EG) has been used successfully in cryopreserving biopsied in vivo bovine embryos (Darrow, 2002 Theriogenology 57(1), 531). This study was undertaken to investigate the efficiency of AG addition in a freezing medium (FM) to cryopreserve biopsied bovine embryos produced in vitro (IVP). Blastocysts of grade 1 were collected at Days 7 and 8 post-insemination. After biopsy with a small blade, embryos were transferred to CR1aa medium and cultured for 2 hours (h) before being frozen. In experiment 1, a group of unbiopsied embryos were handled in a manner similar to that used for the biopsied embryos. Embryos were frozen using either 1.5M EG+0.1M sucrose (EG+) (AB Technology, Pullman, WA, USA) or a FM containing 1.5M EG and different concentrations of AG (AG1, 2 and 3, courtesy of AB Technology). Embryos remained in FM for 10 (exp.1), 5 (exp.2), 5 and 10 (exp.3) or 5, 10, and 20 (exp.4) minutes before being loaded into a freezer and cooled down to −35°C at 0.3°C/min. Frozen embryos were thawed (35°C, 20 seconds) and cultured in CR1aa at 38.5°C for 3 days. Embryo survival rates (S%) were recorded at 24, 48 and 72h post-thawing. Data were compared with t-test or ANOVA procedures using SigmaStat 3.0. Results from exp.1 (Table) indicate that biopsied and unbiopsied embryos survived well in EG+ or AG2. While the biopsy procedure did not affect the post-thaw S% of embryos in either FM, no significant differences were observed between embryos frozen with EG+ and AG2 (P=0.055). Reducing or increasing AG concentration in FM by 2-fold (AG1 and 3, respectively) did not significantly affect the post-thaw S% at 24h (EG+, 80.0%, n=133; AG1, 83.3%, n=135; AG2, 71.4%, n=137 and AG3, 75.0%, n=135; P=0.217, exp.2). However, shortened exposure from 10 to 5 minutes to AG2 resulted in an improvement in S% at 24h, from 35.7% (n=80) to 61.4% (n=82, P&lt;0.05; exp.3). When AG1 (=0.5×AG2) was used in the FM the S% at 24h after different exposure times was not significant (5 minutes, 77.8%, n=179; 10 and 20 minutes, 66.7%, n=179 and 183; P=0.472, exp.4). This study demonstrates that addition of AG to the FM effectively sustains the viability of biopsied IVP embryos during freezing and any potential harmful impact of AG on embryo survival can be minimized by reducing AG concentration or the time of embryo exposure to AG prior to freezing. Further studies are needed to determine optimal AG concentration. Currently, field trials are underway to evaluate the ability of AG medium to promote pregnancies from frozen, biopsied IVP embryos. Table 1 Post-thaw survival rates of biopsied IVP embryos frozen in ethylene glycol with sucrose (EG+) and a FM containing arabinogalactan (AG2). Data are means±SEM


1995 ◽  
Vol 1995 ◽  
pp. 140-140
Author(s):  
K D Sinclair ◽  
P J Broadbent ◽  
D F Dolman ◽  
R G Watt ◽  
J S Mullan

Various methods of creating twin pregnancies in cattle have been investigated by other authors (see review by Sreenan and Diskin, 1987). However, virtually all of these methods have involved in vivoproduced embryos which, in separate studies, have employed either surgical or non-surgical transfer techniques, where embryos were transplanted either unilaterally or bilaterally in recipients which may or may not have been previously artificially inseminated. There have been no studies where all of these factors were examined collectively, and included with the transplantation of either frozen-thawed in vivoor in vitroproduced embryos. The objectives of the current study were, therefore, to compare pregnancy, twinning and embryo survival rates of recipients in which twin pregnancies were induced by various combinations of embryo source and transfer method to animals inseminated or not prior to embryo transfer, and the distribution of the embryos in the uterus.


2009 ◽  
Vol 21 (1) ◽  
pp. 131
Author(s):  
L. Frers ◽  
J. Hepburn ◽  
J. Mandriaza Munoz ◽  
J. Forsyth ◽  
K. Strongman

There is increasing interest in vitrification as a method of cryopreserving bovine embryos, especially previously problematic embryos such as IVP and Jersey cattle embryos, which, it has been suggested, have lower tolerance to cryopreservation because of the high lipid content of the embryo interfering with water movement out of the cells. Jersey embryos were demonstrated to have lower pregnancy rates following cryopreservation compared with Holstein embryos [Steel R et al. 2004 Reprod. Fertil. Dev. 16(Suppl. 2), 120 abst]. The first trial aimed to compare the subsequent pregnancy rate of vitrified and fresh in vitro-produced embryos. Embryos were produced by 9 Friesian cows through transvaginal recovery and in vitro production (IVP) over a 10-week period. The embryos produced during the first 6 weeks were all vitrified and warmed during the last 4-week period concurrent with the transfer of fresh embryos produced from the same donor cows at that time. Vitrification and warming were performed using a technique previously reported (Peachey B et al. 2005 Reprod. Fertil. Dev. 17, 199 abst) using the CVM method (Lindemans W et al. 2004 Reprod. Fertil. Dev. 16, 174 abst). All embryos were transferred by the same experienced technician into randomly assigned synchronized recipients of the same herd. All recipients were scanned for pregnancy 40 days after transfer. Data (Table 1) were compared by Fisher exact test and showedno significant difference (P = 0.761) between pregnancy rates of vitrified-warmed embryos and fresh embryos. This result demonstrates that vitrification is a valuable technique in cryopreservation of IVP embryos. In a second trial, pregnancy rates of in vivo-produced Jersey embryos after slow freezing and vitrification were compared. Embryos were flushed from 6 Jersey cows and randomly divided into 2 groups to be cryopreserved. The first group of 12 embryos (DT) were cryopreserved by slow freezing (0.3°C min–1 to –35°C) in 1.5 m ethylene glycol + 0.1 m sucrose. The second group of 12 embryos (VIT) were vitrified and warmed, using the same technique as described above. All embryos were transferred on the same day, by the same experienced technician, to randomly assigned recipient cows in the same herd. The pregnancy results for VIT were 7/12 (58%) and for DT were 4/12 (33%). The data were compared by logistic regression (Genstat v. 10, VSN International, Hemel Hempstead, UK) to account for donor effect, and no significant difference (P = 0.462) was found. It is proposed that the lack of significant difference may be due to the small numbers in the trial but that the results are promising enough to warrant further use and evaluation of this technique in the cryopreservation of Jersey cattle embryos. Table 1.Pregnancy rates of fresh v. vitrified/warmed IVP embryos


Sign in / Sign up

Export Citation Format

Share Document