92 Culture method for long-distance transport of bovine embryos derived from IVF before blastulation using microtubes

2019 ◽  
Vol 31 (1) ◽  
pp. 172
Author(s):  
T. Yamanouchi ◽  
H. Matsuda ◽  
K. Ogata ◽  
Y. Hashiyada

In vitro-produced (IVP) embryos are more easily damaged by cryopreservation than in vivo-derived embryos. Therefore, transportation of fresh IVP embryos in a manner that can maintain viability is necessary. This study was conducted to determine the preferable culture conditions for transport of embryos at 5 days post-insemination (dpi) in 1.5-mL microtubes. Cumulus-oocyte complexes derived from an abattoir were matured and then inseminated with frozen-thawed semen. Presumptive zygotes were cultured in mCR1aa (CR1)+5% calf serum (CS) until use. In Exp. 1, embryos with 5 blastomeres at 5 dpi were randomly assigned to 1 of 3 groups: 25mM Hepes-CR1aa (H-CR1)+5% CS or 25mM Hepes-M199 (H-M199)+5% CS in air, or CR1 in 5% CO2. Embryos were cultured in microdrops overlaid with liquid paraffin in a petri dish for 48h at 38.5°C. In Exp. 2, the optimal number of embryos to culture per microtube was assessed. Presumptive zygotes were cultured in groups of 20, 40, or 80 in 1mL of CR1 covered with liquid paraffin in microtubes in an incubator at 38.5°C in 5% CO2 until 7 dpi. For Exp. 3, culture of embryos in microtubes in a portable incubator was tested. At 5 dpi, 5-cell embryos (n=17 to 36 per microtube) were statically cultured in 1mL of CR1 or H-CR1 in microtubes in a portable incubator set at 38.5°C for 48h. The CR1 was pre-equilibrated in an incubator in 5% CO2 for 24h before use. Embryos were harvested from microtubes after 48h and were then cultured in microdrops of CR1 overlaid with liquid paraffin in a petri dish in an incubator at 38.5°C in 5% CO2 until 8 dpi. In Exp. 4, embryos (n=29 to 39 five-cell embryos per microtube) were transported in a portable incubator by land for 1000km over a period of 44h using the same conditions as in Exp. 3. Control embryos were statically cultured in microdrops of CR1 in an incubator in 5% CO2. Statistical analyses were carried out by ANOVA (Exp. 1 and 2), t-test (Exp. 3), or Fisher’s exact test (Exp. 4). In Exp. 1, there was no effect (P>0.05) of culture medium on blastocyst development at 7 dpi (27.6±2.3, 25.7±7.2, and 17.3±2.9% for CR1, H-CR1, and H-M199, respectively). In Exp. 2, blastocyst development at 7 dpi was not affected (P>0.05) by the number of presumptive zygotes cultured per microtube (43.6±8.3, 42.4±4.0, and 39.9±2.9% for 20, 40, and 80 presumptive zygotes, respectively). In Exp. 3, blastocyst development at 8 dpi was not affected (P>0.05) by culture medium (60.7±7.4 and 53.1±4.4% for CR1 and H-CR1, respectively); however, the pH of CR1 changed from 7.5 to 8.1 at 48h after culture. In Exp. 4, blastocyst development at 8 dpi was not affected (P>0.05) by transport (57.1, 64.4, and 75.5% for CR1, H-CR1, and control, respectively). These results indicate that IVP embryos harvested at 5 dpi can be transported by portable incubator with no effect on embryo development to the blastocyst stage. This work was supported by grants from the Project of the Bio-oriented Technology Research Advancement Institution, NARO (the special scheme project on advanced research and the development for next-generation technology).

Zygote ◽  
2012 ◽  
Vol 22 (2) ◽  
pp. 146-157 ◽  
Author(s):  
Daniela Martins Paschoal ◽  
Mateus José Sudano ◽  
Midyan Daroz Guastali ◽  
Rosiára Rosária Dias Maziero ◽  
Letícia Ferrari Crocomo ◽  
...  

SummaryThe objective of this study was to assess the viability and cryotolerance of zebu embryos produced in vitro with or without the addition of fetal calf serum (FCS) and forskolin (F). Embryos produced in vivo were used as a control. Presumptive zygotes were cultured in modified synthetic oviductal fluid supplemented with amino acids (SOFaa), bovine serum albumin (BSA) and with (2.5%) or without (0%) FCS. On day 6 of growth, the embryos from each group were divided into treatments with or without 10 μM F to induce embryonic lipolysis, comprising a total of four experimental groups: 2.5% FCS, 0% FCS, 2.5% + F and 0% + F. For vitrification, embryos were exposed to vitrification solution 1 (5 M EG (ethylene glycol)) for 3 min and then transferred to vitrification solution 2 (7 M EG, 0.5 M galactose solution and 18% (w/v) Ficoll 70) before being introduced to liquid nitrogen. The presence of FCS in the culture medium resulted in the production of embryos with a similar rate of damaged cells compared with in vivo-produced embryos. After vitrification, the 2.5% FCS group had a significantly higher rate of damaged cells when compared with the other groups (P < 0.05). The results of this experiment indicated that the omission of FCS and the addition of forskolin do not have deleterious effect on embryo production rates. In addition, embryos produced in the presence of FCS had greater sensitivity to cryopreservation, but this effect was reversed when forskolin was added to the medium, which improved embryo survival without affecting embryo development and quality after vitrification.


2011 ◽  
Vol 23 (1) ◽  
pp. 191 ◽  
Author(s):  
J. Angulo ◽  
G. T. Gentry ◽  
R. A. Godke ◽  
K. R. Bondioli

It has been reported that the addition of serum to embryo culture media alters gene expression and triggers the development of large offspring syndrome. The objectives of this study were to determine gene expression levels in embryos cultured in the absence or presence of 5% calf serum and in vivo-derived (IVD) embryos and to determine the effects of serum on the length of elongated embryos. Abattoir-derived oocytes were obtained from a commercial provider and fertilized at 24 h of maturation with semen from a bull previously used for IVF. At 18 h post-insemination (hpi), embryos were denuded and groups of 15 presumptive zygotes were cultured in 30-μL drops of modified SOF medium with amino acids and 6 mg mL–1 of BSA (mSOFaa). At 72 hpi, cleavage rate was assessed and embryos were randomly allocated into 2 treatments: mSOFaa without and with 5% calf serum. Embryos were then cultured to 168 hpi and blastocyst rates were assessed and recorded. Blastocysts (n = 5 to 10) from each treatment were transferred into synchronized recipients, and Day 14 embryos were recovered 7 days post-transfer. Embryos were photographed, measured, and immediately stored at –80°C in a minimal volume of PBS + 0.1% polyvinyl alcohol. Messenger RNA was isolated using a Dynabeads mRNA Direct Kit™ (Invitrogen, Carlsbad, CA), and reverse transcription was performed using an iScript™ cDNA Synthesis Kit (Bio-Rad Laboratories, Inc., CA). Quantitative PCR was performed to determine the transcript abundance for COX6A, IFNT1a, PLAC8, IGF2R, and GAPDH for each sample. The GAPDH was used as a reference gene, and gene expression was calculated as a ratio of expression levels between each gene of interest and GAPDH. Expression levels for each gene were determined from standard curves generated by serial dilutions of PCR amplicons starting with 0.4 pg/reaction. Blastocyst development rates were higher in embryos cultured with serum compared with the nonserum treatment (14.9 and 7.4% respectively; chi-square, P < 0.001). Lengths of elongated embryos from the serum (3395.3 ± 414.7 μm) and nonserum (2784 ± 741.8 μm) culture treatments differed from the IVD (6297.7 ± 677.2 μm) treatment (mean ± SE; ANOVA, P < 0.0052). There were no differences in the mean expression levels for COX6A, IFNT1a, PLAC8, and IGF2R across treatment groups, but in the serum treatment, 3 out 11 overexpressed IFNT1a, 4 out of 11 overexpressed IGF2R, and 2 out of 11 overexpressed PLAC8, defined as being 2 standard deviations above the mean of the IVD treatment for each respective gene. In the in vitro-produced nonserum and IVD treatments, overexpression by this definition was not observed. Although mean expression levels were not affected by culture with serum under these conditions, very high expression of IFNT1a, IGF2R, and PLAC8 was observed in some embryos cultured with serum, but not in embryos cultured without serum or IVD embryos.


2011 ◽  
Vol 23 (1) ◽  
pp. 173
Author(s):  
M. J. Sudano ◽  
D. M. Paschoal ◽  
T. S. Rascado ◽  
L. C. O. Magalhães ◽  
L. F. Crocomo ◽  
...  

Phenazine ethosulfate (PES) is a metabolic regulator that inhibits fatty acid synthesis and favours the pentose-phosphate pathway. Supplementation of fetal calf serum (FCS) during culture has been correlated with the reduction of quality of in vitro produced bovine embryos (IVPE). The aim of the present study was to evaluate embryo development and apoptosis in blastocysts after the supplementation of PES and FCS in culture medium of IVPE. Oocytes (N = 4320) were matured and fertilized in vitro (Day 0). The zygotes (Bos indicus) were cultured in SOFaa medium with 4 concentrations of FCS (0, 2.5, 5, and 10%) and with the use or not of 0.3 μM PES from Day 4 (after 96 h of embryo culture). Embryo development was evaluated after 7 days of culture. Apoptosis in blastocysts (N = 60–80) was accessed through TUNEL reaction. Embryos (Bos indicus) recovered from superstimulated cows were used as in vivo control (n = 15). Data were analysed by ANOVA followed by LSD using PROC GLIMMIX (SAS; SAS Institute Inc., Cary, NC, USA) means ± SEM. Increasing FCS concentration in the culture media did not change cleavage (86.7 ± 1.7, 82.3 ± 1.6, 86.3 ± 1.4, 87.0 ± 1.5, P > 0.05) and augmented blastocyst production (30.5 ± 2.5a, 41.8 ± 2.4b, 40.5 ± 2.6b, 47.2 ± 2.8b, P < 0.05), respectively, for 0, 2.5, 5, and 10%. Additionally, increasing FCS concentration increased apoptosis in blastocysts (13.8 ± 1.2b, 19.1 ± 1.8b, 20.7 ± 1.9bc, 28.4 ± 2.3c, P < 0.05, respectively, for 0, 2.5, 5, and 10%). The addition of PES from Day 4 in the culture medium did not affect (P > 0.05) cleavage (87.0 ± 1.3 and 84.4 ± 1.3), blastocyst production (42.0 ± 2.8 and 43.0 ± 2.0), and apoptosis in blastocysts (20.7 ± 2.0b and 18.9 ± 2.1b), respectively, for control and PES Day 4 groups. Independent of FCS withdrawal or PES addition to culture medium, the in vivo control group presented the lowest apoptosis rate (6.3 ± 1.1a). Therefore, increasing FCS concentration augmented embryo development and reduced blastocyst quality. However, the addition of 2.5% of FCS in the culture medium increased the embryo development without the reduction of blastocyst quality. Moreover, the PES supplementation from Day 4 did not affect embryo development and blastocyst quality. São Paulo Research Foundation – FAPESP.


Reproduction ◽  
2002 ◽  
pp. 791-799 ◽  
Author(s):  
LB Creemers ◽  
K den Ouden ◽  
AM van Pelt ◽  
DG de Rooij

The culture of spermatogonial cells under well-defined conditions would be an important method for elucidating the mechanisms involved in spermatogenesis and in establishing tissue regeneration in vivo. In this study, a serum-free culture system was established, with type A spermatogonia isolated from adult vitamin A-deficient mice. At days 1, 3 and 7 of culture, the viability and proliferation of cells were monitored. The viability of the cells decreased by day 7 to 10% of the cells present. Proliferation occurred mainly during day 1, when 1% of the germ cells was proliferating. Co-labelling for a germ cell marker (heat shock protein-90alpha, Hsp90alpha), and a marker used to detect dividing cells (bromodeoxyuridine, BrdU), showed that this proliferation was restricted to germ cells. In an attempt to improve these parameters, medium containing fetal calf serum (FCS) was used. Viability was not influenced by serum, but proliferation was markedly enhanced. However, after day 7 of incubation with FCS, co-immunolocalization for Hsp90alpha and BrdU showed a preferential proliferation of somatic cells. Comparison of cultures of adult cells with cultures of prepubertal germ cells, commonly used in studies of spermatogenesis, showed that prepubertal germ cells are twice as viable. In addition, a different proliferation profile was observed, with a peak at day 3. Here, a distinct proliferation of somatic cells was also noted. The results from the present study indicate that the origin of isolated germ cells partly determines culture outcome and that cultures of prepubertal germ cells may not be representative for adult spermatogenesis. Moreover, adding FCS to the culture medium invokes the risk of profound and undesirable effects on cell composition, also underlining the need for identification of germ cells during culture.


2015 ◽  
Vol 27 (1) ◽  
pp. 162
Author(s):  
J. M. Palomino ◽  
M. P. Cervantes ◽  
G. Mastromonaco ◽  
R. J. Mapletoft ◽  
B. Allan ◽  
...  

Endemic brucellosis threatens wild herds of wood bison (Bison bison athabascae) in and around Wood Buffalo National Park, the largest genetic reserve of wood bison in the world. The overall goal of our project was to produce and preserve disease-free embryos for the purpose of conserving the genetic diversity of this species. The aim of the present experiment was to determine the effectiveness of washing procedures for removing Brucella bacteria from in vivo-derived wood bison embryos exposed in vitro to the pathogen. Wood bison cows were given 300 mg im of Folltropin diluted in 0.5% hyaluronan on the day of follicle wave emergence (Day 0) and 100 mg im of hyaluronan on Day 2, and then given 2500 IU im of hCG on Day 5 and inseminated 12 and 24 h later. Embryos were collected on Day 13. The experiment was done in 6 replicates (n = 4 bison/replicate) and an average of 9 embryos/replicate were collected. Zona pellucida-intact embryos were kept in holding medium (PBS + 2% fetal calf serum) and transported to a Biosafety Level 3 laboratory at the International Vaccine Centre, University of Saskatchewan. Embryos were transferred through 5 aliquots of holding medium to remove any contaminant before exposure to Brucella. Embryos were divided equally into 2 Petri dishes (representing later wash groups with v. without antibiotics) containing 2.7 mL of holding medium (n = 2 to 7 embryos per dish/replicate). In a Class II biosafety cabinet, Brucella abortus biovar 1 (1 × 107 to 1 × 109 CFU mL–1 in 0.3 mL) was added to each Petri dish and incubated for 2 h at 37°C in 8% CO2. A sample of holding medium was taken before exposure and after incubation for culture as negative and positive controls, respectively. After incubation, embryos in each Petri dish were subjected to a 10-step washing procedure (according to the IETS Manual, 2010) using wash medium (PBS + 0.4% BSA) without antibiotics or with antibiotics (100 IU mL–1 of penicillin + 100 μg mL–1 of streptomycin). The embryo wash medium was cultured at wash steps 1, 3, 6, and 9. After the tenth wash, the zona pellucida of each embryo was ruptured mechanically using a glass pipette and embryos were cultured individually. Culturing of samples was done on sheep blood agar and specific identification of Brucella organisms was done by PCR. Brucella abortus was detected in 3 embryos from the group washed in medium without antibiotics (3/27), whereas all embryos washed in medium with antibiotics were culture negative (0/27). Brucella abortus was not detected in wash media after the third wash in either group (with or without antibiotics). In summary, Brucella abortus was removed from 89% of in vitro-exposed wood bison embryos using the washing procedure without antibiotics, and from 100% using the washing procedure with antibiotics. Results validate the embryo washing technique for producing Brucella-free wood bison embryos. Thanks to the Canadian Food Inspection Agency for the field strain of Brucella abortus, Bioniche AH for Folltropin and embryo collection supplies, Merck AH for hCG (Chorulon), and Intervac/VIDO for technical and logistical support.


Reproduction ◽  
2003 ◽  
pp. 519-526 ◽  
Author(s):  
T Mayanagi ◽  
K Ito ◽  
J Takahashi

Primordial germ cells differentiate into germ cells and have the ability to reacquire totipotency. Mouse primordial germ cells are identified by alkaline phosphatase staining of the extraembryonic mesoderm, and they proliferate and migrate to reach the genital ridges. Mouse primordial germ cells have never been maintained in culture exclusively for longer than a week without differentiation or dedifferentiation. Moreover, primordial germ cells have not been proliferated with urogenital complexes in vitro, because gonad culture has never been successful. It was thought that primordial germ cells could proliferate in a culture of urogenital complex under modified medium conditions resembling those in vivo; however, organ culture of mouse gonad has been performed with fetal calf serum or equine serum, and those sera produce conditions different from those in vivo. Therefore, mouse urogenital complexes were cultured in media containing rodent sera. As a result, it was possible to proliferate primordial germ cell-like cells outside gonads, and these cells very closely resembled primordial germ cells. In addition, motile primordial germ cell-like cells could be obtained. The ability to maintain primordial germ cell-like cells in culture by this intra-species culture method is important in the study of gametogenesis. Furthermore, this method is useful as a source of stem cells such as embryonic germ cells.


1994 ◽  
Vol 6 (2) ◽  
pp. 261 ◽  
Author(s):  
A Boediono ◽  
M Takagi ◽  
S Saha ◽  
T Suzuki

Oocytes were matured in medium supplemented with 5% serum collected from superovulated cows at oestrus (Day-0 SCS) or at the time of embryo collection (Day-7 SCS), or in medium supplemented with fetal calf serum (FCS). After insemination using frozen-thawed sperm, oocytes were cultured in vitro with medium supplemented with 5% Day-0 SCS or 5% Day-7 SCS or 5% FCS. The proportions of embryos that cleaved were not significantly different among treatments, whereas development of the embryo to a blastocyst was significantly higher in the presence of SCS than FCS. When the four possible combinations of Day-0 SCS and Day-7 SCS were used in the maturation and culture media, there were no differences among treatments, except that the cleavage rate was significantly higher (P < 0.05) with Day-0 SCS in the maturation medium and Day-7 SCS in the culture medium than with Day-7 SCS in the maturation medium and Day-0 SCS in the culture medium. The proportions of embryos that cleaved and developed to blastocysts were not related with the level of progesterone and luteinizing hormone in the serum added to the maturation and culture media. However, the use of serum with low concentrations of glucose, fatty acids and cholesterol in the maturation medium and the culture medium tended to be associated with a higher rate of cleavage and blastocyst development.


2015 ◽  
Vol 27 (4) ◽  
pp. 602 ◽  
Author(s):  
Rebecca L. Krisher ◽  
Adam L. Heuberger ◽  
Melissa Paczkowski ◽  
John Stevens ◽  
Courtney Pospisil ◽  
...  

The advent of metabolomics technology and its application to small samples has allowed us to non-invasively monitor the metabolic activity of embryos in a complex culture environment. The aim of this study was to apply metabolomics technology to the analysis of individual embryos from several species during in vitro development to gain an insight into the metabolomics pathways used by embryos and their relationship with embryo quality. Alanine is produced by both in vivo- and in vitro-derived human, murine, bovine and porcine embryos. Glutamine is also produced by the embryos of these four species, but only those produced in vitro. Across species, blastocysts significantly consumed amino acids from the culture medium, whereas glucose was not significantly taken up. There are significant differences in the metabolic profile of in vivo- compared with in vitro-produced embryos at the blastocyst stage. For example, in vitro-produced murine embryos consume arginine, asparagine, glutamate and proline, whereas in vivo-produced embryos do not. Human embryos produce more alanine, glutamate and glutamine, and consume less pyruvate, at the blastocyst compared with cleavage stages. Glucose was consumed by human blastocysts, but not at a high enough level to reach significance. Consumption of tyrosine by cleavage stage human embryos is indicative of blastocyst development, although tyrosine consumption is not predictive of blastocyst quality. Similarly, although in vivo-produced murine blastocysts consumed less aspartate, lactate, taurine and tyrosine than those produced in vitro, consumption of these four amino acids by in vitro-derived embryos with high octamer-binding transcription factor 4 (Oct4) expression, indicative of high quality, did not differ from those with low Oct4 expression. Further application of metabolomic technologies to studies of the consumption and/or production of metabolites from individual embryos in a complete culture medium could transform our understanding of embryo physiology and improve our ability to produce developmentally competent embryos in vitro.


Reproduction ◽  
2009 ◽  
Vol 138 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Xiangpeng Dai ◽  
Jie Hao ◽  
Qi Zhou

Many strategies have been established to improve the efficiency of somatic cell nuclear transfer (SCNT), but relatively few focused on improving culture conditions. The effect of different culture media on preimplantation development of mouse nuclear transfer embryos was investigated. A modified sequential media method, named D media (M16/KSOM and CZB-EG/KSOM), was successfully established that significantly improves SCNT embryo development. Our result demonstrated that while lacking any adverse effect on in vivo fertilized embryos, the D media dramatically improves the blastocyst development of SCNT embryos compared with other commonly used media, including KSOM, M16, CZB, and αMEM. Specifically, the rate of blastocyst formation was 62.3% for D1 (M16/KSOM) versus 10–30% for the other media. An analysis of media components indicated that removing EDTA and glutamine from the media can be beneficial for early SCNT embryo development. Our results suggest that in vitro culture environment plays an important role in somatic cell reprogramming, and D media represent the most efficient culture method reported to date to support mouse SCNT early embryo development in vitro.


Author(s):  
С.В. Калиш ◽  
С.В. Лямина ◽  
А.А. Раецкая ◽  
И.Ю. Малышев

Цель исследования. Репрограммирование М1 фенотипа макрофагов с ингибированными факторами транскрипции М2 фенотипа STAT3, STAТ6 и SMAD и оценка их влияния на развитие карциномы Эрлиха (КЭ) in vitro и in vivo. Методика. Рост опухоли иницировали in vitro путем добавления клеток КЭ в среду культивирования RPMI-1640 и in vivo путем внутрибрюшинной инъекции клеток КЭ мышам. Результаты. Установлено, что M1макрофаги и in vitro, и in vivo оказывают выраженный противоопухолевый эффект, который превосходит антиопухолевые эффекты М1, M1, M1 макрофагов и цисплатина. Заключение. М1 макрофаги с ингибированными STAT3, STAT6 и/или SMAD3 эффективно ограничивают рост опухоли. Полученные данные обосновывают разработку новой технологии противоопухолевой клеточной терапии. Objective. Reprogramming of M1 macrophage phenotype with inhibited M2 phenotype transcription factors, such as STAT3, STAT6 and SMAD and assess their impact on the development of Ehrlich carcinoma (EC) in vitro and in vivo . Methods. Tumor growth in vitro was initiated by addition of EC cells in RPMI-1640 culture medium and in vivo by intraperitoneal of EC cell injection into mice. Results. It was found that M1 macrophages have a pronounced anti-tumor effect in vitro , and in vivo , which was greater than anti-tumor effects of M1, M1, M1 macrophages and cisplatin. Conclusion. M1 macrophages with inhibited STAT3, STAT6 and/or SMAD3 effectively restrict tumor growth. The findings justify the development of new anti-tumor cell therapy technology.


Sign in / Sign up

Export Citation Format

Share Document