m1 macrophages
Recently Published Documents


TOTAL DOCUMENTS

495
(FIVE YEARS 300)

H-INDEX

36
(FIVE YEARS 10)

2022 ◽  
Vol 8 (2) ◽  
Author(s):  
Tian Zhou ◽  
Chang He ◽  
Peilong Lai ◽  
Ziqi Yang ◽  
Yan Liu ◽  
...  

MSC-exo eye drops alleviate GVHD-associated dry eye disease by shifting M1 macrophages to M2 via miR-204.


Author(s):  
Alexander T Sougiannis ◽  
Brandon N. VanderVeen ◽  
Ioulia Chatzistamou ◽  
Jason L Kubinak ◽  
Mitzi Nagarkatti ◽  
...  

Emodin, a natural anthraquinone, has been shown to have anti-tumorigenic properties and may be an effective therapy for colorectal cancer (CRC). However, its clinical development has been hampered by a poor understanding of its mechanism of action. The purpose of this study was to 1) evaluate the efficacy of emodin in mouse models of intestinal/colorectal cancer and 2) to examine the impact of emodin on macrophage behavior in the context of CRC. We utilized a genetic model of intestinal cancer (ApcMin/+) and a chemically induced model of CRC (AOM/DSS). Emodin was administered orally (40 mg/kg or 80 mg/kg in AOM/DSS and 80mg/kg in ApcMin/+) 3x/week to observe its preventative effects. Emodin reduced polyp count and size in both rodent models (p<0.05). We further analyzed the colon microenvironment of AOM/DSS mice and found that mice treated with emodin exhibited lower pro-tumorigenic M2-like macrophages and a reduced ratio of M2/M1 macrophages within the colon (p<0.05). Despite this, we did not detect any significant changes in M2-associated cytokines (IL10, IL4, and Tgfb1) nor M1-associated cytokines (IL6, TNFα, IL1β, and IFNγ) within excised polyps. However, there was a significant increase in NOS2 expression (M1 marker) in mice treated with 80 mg/kg emodin (p<0.05). To confirm emodin's effects on macrophages, we exposed bone marrow-derived macrophages (BMDMs) to C26 colon cancer cell conditioned media. Supporting our in vivo data, emodin reduced M2-like macrophages. Overall, these data support the development of emodin as a natural compound for prevention of CRC given its ability to target pro-tumor macrophages.


2022 ◽  
Vol 11 ◽  
Author(s):  
Dechao Feng ◽  
Xu Shi ◽  
Qiao Xiong ◽  
Facai Zhang ◽  
Dengxiong Li ◽  
...  

BackgroundWe aimed to establish a novel epithelial-mesenchymal transition (EMT)-related gene prognostic index (EMTGPI) associated with biochemical recurrence (BCR) and drug resistance for prostate cancer (PCa).MethodsWe used Lasso and Cox regression analysis to establish the EMTGPI. All analyses were conducted with R version 3.6.3 and its suitable packages.ResultsWe established the EMTGPI based on SFRP4 and SPP1. Patients in high-risk group had 2.23 times of BCR risk than those in low-risk group (p = 0.003), as well as 2.36 times of metastasis risk (p = 0.053). In external validation, we detected similar diagnostic efficacy and prognostic value in terms of BCR free survival. For drug resistance, we observe moderately diagnostic accuracy of EMTGPI score (AUC: 0.804). We found that PDCD1LG2 (p = 0.04) and CD96 (p = 0.01) expressed higher in BCR patients compared with their counterpart. For TME analysis, we detected that CD8+ T cells and M1 macrophages expressed higher in BCR group. Moreover, stromal score (p = 0.003), immune score (p = 0.01), and estimate score (p = 0.003) were higher in BCR patients. We found that EMTGPI was significantly related to HAVCR2 (r: 0.34), CD96 (r: 0.26), CD47 (r: 0.22), KIR3DL1 (r: −0.21), KLRD1 (r: −0.21), and CD2 (r: 0.21). In addition, we observed that EMTGPI was significantly associated with M1 macrophages (r: 0.6), M2 macrophages (r: −0.33), monocytes (r: −0.18), neutrophils (r: −0.43), CD8+ T cells (r: 0.13), and dendritic cells (r: 0.37). PHA-793887 was the common drug sensitive to SPP1 and SFRP4, and PC3 and DU145 were the common PCa-related cell lines of SPP1, SFRP4, and PHA-793887.ConclusionsWe concluded that the EMTGPI score based on SFRP4 and SPP1 could be used to predict BCR for PCa patients. We confirmed the impact of immune evasion on the BCR process of PCa.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xinqing Lin ◽  
Jiaxi Deng ◽  
Haiyi Deng ◽  
Yilin Yang ◽  
Ni Sun ◽  
...  

BackgroundWhile immune checkpoint inhibitors (ICIs) are a beacon of hope for non-small cell lung cancer (NSCLC) patients, they can also cause adverse events, including checkpoint inhibitor pneumonitis (CIP). Research shows that the inflammatory immune microenvironment plays a vital role in the development of CIP. However, the role of the immune microenvironment (IME) in CIP is still unclear.MethodsWe collected a cohort of NSCLC patients treated with ICIs that included eight individuals with CIP (CIP group) and 29 individuals without CIP (Control group). CIBERSORT and the xCell algorithm were used to evaluate the proportion of immune cells. Gene set enrichment analysis (GSEA) and single-sample GSEA (ssGSEA) were used to evaluate pathway activity. The ridge regression algorithm was used to analyze drug sensitivity.ResultsCIBERSORT showed significantly upregulated memory B cells, CD8+ T cells, and M1 Macrophages in the CIP group. The number of memory resting CD4+ T cells and resting NK cells in the CIP group was also significantly lower than in the Control group. The XCell analysis showed a higher proportion of Class-switched memory B-cells and M1 Macrophages in the CIP group. Pathway analysis showed that the CIP group had high activity in their immune and inflammatory response pathways and low activity in their immune exhaustion related pathway.ConclusionsIn this study, we researched CIP patients who after ICIs treatment developed an inflammatory IME, which is characterized by significantly increased activated immune cells and expression of inflammatory molecules, as well as downregulated immunosuppressive lymphocytes and signaling pathways. The goal was to develop theoretical guidance for clinical guidelines for the treatment of CIP in the future.


2022 ◽  
Author(s):  
Lanbo Shi ◽  
Qingkui Jiang ◽  
Yunping Qiu ◽  
Irwin J. Kurland ◽  
Karl Drlica ◽  
...  

In response to Mycobacterium tuberculosis infection, macrophages mount early proinflammatory and antimicrobial responses similar to those observed in M1 macrophages classically activated by LPS and IFN-γ. A metabolic reprogramming to HIF-1-mediated uptake of glucose and its metabolism by glycolysis is required for M1-like polarization, but little is known about other metabolic programs driving M1-like polarization during M. tuberculosis infection. Identification and quantification of labeling patterns of U 13 C glutamine and U 13 C glucose-derived metabolites demonstrated that glutamine, rather than glucose, is catabolized in both the oxidative and reductive TCA cycle of M1-like macrophages, thereby generating signaling molecules that include succinate, biosynthetic precursors such as aspartate, and the antimicrobial metabolite itaconate. This conclusion is corroborated by diminished M1 polarization via chemical inhibition of glutaminase (GLS), the key enzyme of the glutaminolysis pathway, and by genetic deletion of GLS in infected macrophages. Furthermore, characterization of the labeling distribution pattern of U 15 N glutamine in M1-like macrophages indicates that glutamine serves as a nitrogen source for the synthesis of intermediates of purine and pyrimidine metabolism plus amino acids including aspartate. Thus, the catabolism of glutamine, as an integral component of metabolic reprogramming in activating macrophages, fulfills the cellular demand for bioenergetic and biosynthetic precursors of M1-like macrophages. Knowledge of these new immunometabolic features of M1-like macrophages is expected to advance the development of host-directed therapies that will enhance bacterial clearance and prevent immunopathology during tuberculosis.


Author(s):  
Shuo Zhang ◽  
Peng Wang ◽  
Binwu Hu ◽  
Weijian Liu ◽  
Xiao Lv ◽  
...  

Overactivated inflammation and catabolism induced by proinflammatory macrophages are involved in the pathological processes of intervertebral disc (IVD) degeneration (IVDD). Our previous study suggested the protective role of inhibiting heat shock protein 90 (HSP90) in IVDD, while the underlying mechanisms need advanced research. The current study investigated the effects of HSP90 inhibitor 17-AAG on nucleus pulposus (NP) inflammation and catabolism induced by M1-polarized macrophages. Immunohistochemical staining of degenerated human IVD samples showed massive infiltration of macrophages, especially M1 phenotype, as well as elevated levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP)13. The conditioned medium (CM) of inflamed NP cells (NPCs) enhanced M1 polarization of macrophages, while the CM of M1 macrophages but not M2 macrophages promoted the expression of inflammatory factors and matrix proteases in NPCs. Additionally, we found that 17-AAG could represent anti-inflammatory and anti-catabolic effects by modulating both macrophages and NPCs. On the one hand, 17-AAG attenuated the pro-inflammatory activity of M1 macrophages via inhibiting nuclear factor-κB (NF-κB) pathway and mitogen-activated protein kinase (MAPK) pathways. On the other hand, 17-AAG dampened M1-CM-induced inflammation and catabolism in NPCs by upregulating HSP70 and suppressing the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) pathway. Moreover, both in vitro IVD culture models and murine disc puncture models supported that 17-AAG treatment decreased the levels of inflammatory factors and matrix proteases in IVD tissues. In conclusion, HSP90 inhibitor 17-AAG attenuates NP inflammation and catabolism induced by M1 macrophages, suggesting 17-AAG as a promising candidate for IVDD treatment.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hai Zhou ◽  
Hongcheng Lu ◽  
Li Sun ◽  
Zijie Wang ◽  
Ming Zheng ◽  
...  

T cell-mediated rejection (TCMR) is an important rejection type in kidney transplantation, characterized by T cells and macrophages infiltration. The application of bioinformatic analysis in genomic research has been widely used. In the present study, Microarray data was analyzed to identify the potential diagnostic markers of TCMR in kidney transplantation. Cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) was performed to determine the distribution of immune cell infiltration in the pathology. Totally 129 upregulated differently expressed genes (DEGs) and 378 downregulated DEGs were identified. The GO and KEGG results demonstrated that DEGs were mainly associated with pathways and diseases involved in immune response. The intersection of the two algorithms (PPI network and LASSO) contains three overlapping genes (CXCR6, CXCL13 and FCGR1A). After verification in GSE69677, only CXCR6 and CXCL13 were selected. Immune cells Infiltration analysis demonstrated that CXCR6 and CXCL13 were positively correlated with gamma delta T cells (p &lt; 0.001), CD4+ memory activated T cells (p &lt; 0.001), CD8+ T cells (p &lt; 0.001) and M1 macrophages (p = 0.006), and negatively correlated with M2 macrophages (p &lt; 0.001) and regulatory T cells (p &lt; 0.001). Immunohistochemical staining and image analysis confirmed the overexpression of CXCR6 and CXCL13 in human allograft TCMR samples. CXCR6 and CXCL13 could be diagnostic biomarkers of TCMR and potential targets for immunotherapy in patients with TCMR.


2022 ◽  
Vol 12 ◽  
Author(s):  
Shuting Wang ◽  
Shujun Yang ◽  
Yu Chen ◽  
Yutong Chen ◽  
Rongxia Li ◽  
...  

Introduction: Atherosclerosis is a chronic disease characterized by the inflammatory process and lipid depositions. We previously reported that microRNA-216a (miR-216a) can accelerate the progression of atherosclerosis by promoting the polarization of M1 pro-inflammatory phenotype. Ginsenoside Rb2 (Rb2), the major pharmacologically active compound extracted from ginseng, has a high affinity to miR-216a. In this study, we aimed to investigate whether Rb2 can counteract the effect of miR-216a in macrophages to ameliorate atherosclerosis.Methods: The apolipoprotein E deficiency (ApoE−/−) mice model was chronically infected with miR-216a adenovirus via the tail vein and then intraperitoneally injected with Rb2. The plaque lesion area and stability of thoracic aorta were examined. The human myeloid leukemia mononuclear cells (THP-1) or human peripheral blood mononuclear cells (PBMCs) were cultured in vitro, transfected with miR-216a mimics, and treated with Rb2 to explore the mechanisms of Rb2 on the polarization of M1 macrophages, inflammatory process, and lipid accumulation.Results: In the atherosclerotic ApoE−/− mice model, miR-216a greatly increased en face aortic lesion area of the thoracic aorta, lipid accumulation, and M1 macrophages infiltration in plaques, whereas these effects of miR-216a on atherosclerosis burden were significantly alleviated by Rb2 treatment. In the in vitro THP-1 model, the flow cytometry experiment showed that Rb2 treatment inhibited miR-216a–mediated polarization of M1 macrophages characterized by the surface marker CD86 expression but had no effects on M2 polarization characterized by the surface marker CD206 expression. Mechanistically, Rb2 suppressed the miR-216a–mediated inflammatory response through the Smad3/nuclear factor kappa B inhibitor alpha pathway. Moreover, Rb2 reduced the lipid uptake and promoted cholesterol efflux by counteracting the effects of miR-216a in the THP-1–derived foam cells and in the PBMC-derived foam cells under the oxidized low-density lipoproteins.Conclusion: Our findings indicated that Rb2 might be a potential therapeutic molecule for atherosclerosis by attenuating the atherosclerosis plaque lesion, lipid accumulation, and M1 macrophages polarization by targeting miR-216a. Given that accumulation of foam cells in the intima takes place chronically, the role of Rb2 in atherosclerosis progression needs further investigation.


2022 ◽  
Author(s):  
Yuxuan Ma ◽  
Zhangwei Lu ◽  
Ye Shi ◽  
Zhe Li

High levels of reactive oxygen species (ROS) and nitric oxide (NO) generated by M1 macrophages induce inflammation in the development of rheumatoid arthritis (RA). The eliminating of ROS and NO therefore represents an alternative strategy for RA treatment. Because DNA molecules possess ROS- and endogenous NO-scavenging capability, herein, we develop a nanomedicine based on triangular DNA origami nanostructures for targeted RA treatment. We showed that folic acid-modified triangular DNA origami nanostructures (FA-tDONs) could reduce ROS and NO simultaneously inside proinflammatory M1 macrophages, leading to their polarization into anti-inflammatory M2 subtype. Further in vivo studies confirmed that FA-tDONs could actively target inflamed joints in collagen-induced arthritis (CIA) mice, attenuate inflammatory cytokines and alleviate disease progression. This work demonstrated that DNA origami itself could act as a potential nanomedicine for targeted RA treatment.


Sign in / Sign up

Export Citation Format

Share Document