Diversity components and assembly patterns of plant functional traits determine community spatial stability under resource gradients in a desert steppe

2016 ◽  
Vol 38 (5) ◽  
pp. 511 ◽  
Author(s):  
Zhao Na ◽  
Wang Zhengwen ◽  
Shao Xinqing ◽  
Wang Kun

The diversity–stability relationship has been addressed and debated for decades, but how this relationship is affected by nutrient availability remains contentious. In the present study we assessed the effects of plant diversity, in terms of species richness, functional group composition and functional trait diversity, on the spatial stability of net primary productivity (NPP) following nitrogen and phosphorus application. In addition, we explored how functional traits at the species level contribute to the spatial stability of NPP. The results support the hypothesis that greater diversity leads to higher spatial stability. This relationship was highly dependent on soil nutrient availability, and increasing species richness or functional trait diversity significantly increased spatial variation of NPP under a high N fertilisation level. The effects of high mineral fertilisation rates may perhaps have masked the effects of plant diversity. Although species richness or functional trait diversity of the original and modified communities from which species with particular functional traits had been removed were significantly different, there were no differences in the coefficients of variation in the NPP of those communities. The lack of difference demonstrated that the relationship between spatial variability and biodiversity depended on the measure of diversity applied and that the functional group composition exerted a stronger effect than other diversity measures. Further analyses revealed that spatial stability of NPP was enhanced with increased diversity in vegetative plant height, rooting depth and the presence of legume, and diminished with diversity in the root system type and life cycle under some fertilisation treatments. The present study demonstrates that the relationship between biodiversity and ecosystem functioning is variable with different diversity, identity and environmental factors. Evaluating the contribution of particular traits to community stability will ultimately help us better understand the mechanisms underlying the diversity–stability relationship.

2021 ◽  
Vol 13 (15) ◽  
pp. 3034
Author(s):  
Yujin Zhao ◽  
Yihan Sun ◽  
Wenhe Chen ◽  
Yanping Zhao ◽  
Xiaoliang Liu ◽  
...  

Mapping biodiversity is essential for assessing conservation and ecosystem services in global terrestrial ecosystems. Compared with remotely sensed mapping of forest biodiversity, that of grassland plant diversity has been less studied, because of the small size of individual grass species and the inherent difficulty in identifying these species. The technological advances in unmanned aerial vehicle (UAV)-based or proximal imaging spectroscopy with high spatial resolution provide new approaches for mapping and assessing grassland plant diversity based on spectral diversity and functional trait diversity. However, relatively few studies have explored the relationships among spectral diversity, remote-sensing-estimated functional trait diversity, and species diversity in grassland ecosystems. In this study, we examined the links among spectral diversity, functional trait diversity, and species diversity in a semi-arid grassland monoculture experimental site. The results showed that (1) different grassland plant species harbored different functional traits or trait combinations (functional trait diversity), leading to different spectral patterns (spectral diversity). (2) The spectral diversity of grassland plant species increased gradually from the visible (VIR, 400–700 nm) to the near-infrared (NIR, 700–1100 nm) region, and to the short-wave infrared (SWIR, 1100–2400 nm) region. (3) As the species richness increased, the functional traits and spectral diversity increased in a nonlinear manner, finally tending to saturate. (4) Grassland plant species diversity could be accurately predicted using hyperspectral data (R2 = 0.73, p < 0.001) and remotely sensed functional traits (R2 = 0.66, p < 0.001) using cluster algorithms. This will enhance our understanding of the effect of biodiversity on ecosystem functions and support regional grassland biodiversity conservation.


2015 ◽  
Vol 2 (7) ◽  
pp. 150165 ◽  
Author(s):  
Cássia de Souza Queiroz ◽  
Fernando Rodrigues da Silva ◽  
Denise de Cerqueira Rossa-Feres

One of the most important goals of biodiversity studies is to identify which characteristics of local habitats act as filters that determine the diversity of functional traits along environmental gradients. In this study, we investigated the relationship between the environmental variables of ponds and the functional trait diversity distribution of anuran tadpoles in an agricultural area in southeastern Brazil. Our results show that the functional trait diversity of frog tadpoles has a bell-curve-shaped relationship with the depths of ponds inserted in a pasture matrix. Because we are witnessing increasing human pressure on land use, simple acts (e.g. maintaining reproductive habitats with medium depth) can be the first steps towards preserving the diversity of Neotropical frog tadpole traits in agricultural landscapes.


2015 ◽  
Vol 370 (1662) ◽  
pp. 20140011 ◽  
Author(s):  
Daniel P. Faith

The phylogenetic diversity measure, (‘PD’), measures the relative feature diversity of different subsets of taxa from a phylogeny. At the level of feature diversity, PD supports the broad goal of biodiversity conservation to maintain living variation and option values. PD calculations at the level of lineages and features include those integrating probabilities of extinction, providing estimates of expected PD. This approach has known advantages over the evolutionarily distinct and globally endangered (EDGE) methods. Expected PD methods also have limitations. An alternative notion of expected diversity, expected functional trait diversity, relies on an alternative non-phylogenetic model and allows inferences of diversity at the level of functional traits. Expected PD also faces challenges in helping to address phylogenetic tipping points and worst-case PD losses. Expected PD may not choose conservation options that best avoid worst-case losses of long branches from the tree of life. We can expand the range of useful calculations based on expected PD, including methods for identifying phylogenetic key biodiversity areas.


2015 ◽  
Vol 18 (12) ◽  
pp. 1346-1355 ◽  
Author(s):  
Hélène Deraison ◽  
Isabelle Badenhausser ◽  
Nicolas Loeuille ◽  
Christoph Scherber ◽  
Nicolas Gross

2018 ◽  
Vol 32 (5) ◽  
pp. 1379-1389 ◽  
Author(s):  
Hui Zhang ◽  
Han Y. H. Chen ◽  
Juyu Lian ◽  
Robert John ◽  
Li Ronghua ◽  
...  

2020 ◽  
Vol 287 ◽  
pp. 106691 ◽  
Author(s):  
Carolyn J. Lowry ◽  
Sidney C. Bosworth ◽  
Sarah C. Goslee ◽  
Richard J. Kersbergen ◽  
Fredric W. Pollnac ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document