functional trait diversity
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 3)

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1086
Author(s):  
Rachel A. Brant ◽  
Gerardo R. Camilo

High morphological variation is often associated with species longevity, and it is hypothesized that urban-dwelling species may require more plasticity in functional traits such as body size in order to maximize fitness in heterogeneous environments. There has been published research regarding the functional trait diversity of urban bee pollinators. However, no two cities are identical, so the implementation of multi-city studies is vital. Therefore, we compared body size variation in female Halicus ligatus sweat bees from May–October 2016 from three distinct Midwestern United States cities: Chicago, Detroit, and Saint Louis. Additionally, to elucidate potentially influential environmental factors, we assessed the relationship between temperature and measured body size. We collected bees in community gardens and urban farms and measured their head width and intertegular distance as a proxy for overall body size. We utilized an ANCOVA to determine whether body size variation differed significantly across the three surveyed cities. Results indicated that H. ligatus females in Chicago, Detroit, and Saint Louis had significantly different body size ranges. These findings highlight the importance of intraspecific body size variation and support our prediction that bees from different urban environments will have distinct ranges in body size due to local ecological factors affecting their populations. Additionally, we found a significant influence of temperature, though this is probably not the only important ecological characteristic impacting bee body size. Therefore, we also provided a list of predictions for the future study of specific variables that are likely to impact functional trait diversity in urban bees.


2021 ◽  
Vol 13 (15) ◽  
pp. 3034
Author(s):  
Yujin Zhao ◽  
Yihan Sun ◽  
Wenhe Chen ◽  
Yanping Zhao ◽  
Xiaoliang Liu ◽  
...  

Mapping biodiversity is essential for assessing conservation and ecosystem services in global terrestrial ecosystems. Compared with remotely sensed mapping of forest biodiversity, that of grassland plant diversity has been less studied, because of the small size of individual grass species and the inherent difficulty in identifying these species. The technological advances in unmanned aerial vehicle (UAV)-based or proximal imaging spectroscopy with high spatial resolution provide new approaches for mapping and assessing grassland plant diversity based on spectral diversity and functional trait diversity. However, relatively few studies have explored the relationships among spectral diversity, remote-sensing-estimated functional trait diversity, and species diversity in grassland ecosystems. In this study, we examined the links among spectral diversity, functional trait diversity, and species diversity in a semi-arid grassland monoculture experimental site. The results showed that (1) different grassland plant species harbored different functional traits or trait combinations (functional trait diversity), leading to different spectral patterns (spectral diversity). (2) The spectral diversity of grassland plant species increased gradually from the visible (VIR, 400–700 nm) to the near-infrared (NIR, 700–1100 nm) region, and to the short-wave infrared (SWIR, 1100–2400 nm) region. (3) As the species richness increased, the functional traits and spectral diversity increased in a nonlinear manner, finally tending to saturate. (4) Grassland plant species diversity could be accurately predicted using hyperspectral data (R2 = 0.73, p < 0.001) and remotely sensed functional traits (R2 = 0.66, p < 0.001) using cluster algorithms. This will enhance our understanding of the effect of biodiversity on ecosystem functions and support regional grassland biodiversity conservation.


2021 ◽  
Vol 26 (2) ◽  
Author(s):  
Chelsey Geralda Armstrong ◽  
Jesse E. D. Miller ◽  
Alex C. McAlvay ◽  
Patrick Morgan Ritchie ◽  
Dana Lepofsky

2020 ◽  
Vol 115 ◽  
pp. 106415 ◽  
Author(s):  
Sylvanus Mensah ◽  
Kolawolé Valère Salako ◽  
Achille Assogbadjo ◽  
Romain Glèlè Kakaï ◽  
Brice Sinsin ◽  
...  

2020 ◽  
Vol 287 (1918) ◽  
pp. 20192628 ◽  
Author(s):  
Mike McWilliam ◽  
Morgan S. Pratchett ◽  
Mia O. Hoogenboom ◽  
Terry P. Hughes

The disturbance regimes of ecosystems are changing, and prospects for continued recovery remain unclear. New assemblages with altered species composition may be deficient in key functional traits. Alternatively, important traits may be sustained by species that replace those in decline (response diversity). Here, we quantify the recovery and response diversity of coral assemblages using case studies of disturbance in three locations. Despite return trajectories of coral cover, the original assemblages with diverse functional attributes failed to recover at each location. Response diversity and the reassembly of trait space was limited, and varied according to biogeographic differences in the attributes of dominant, rapidly recovering species. The deficits in recovering assemblages identified here suggest that the return of coral cover cannot assure the reassembly of reef trait diversity, and that shortening intervals between disturbances can limit recovery among functionally important species.


2020 ◽  
Vol 287 ◽  
pp. 106691 ◽  
Author(s):  
Carolyn J. Lowry ◽  
Sidney C. Bosworth ◽  
Sarah C. Goslee ◽  
Richard J. Kersbergen ◽  
Fredric W. Pollnac ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document