The fate of nitrogen fertilisers added to red gradational soils at Batlow, New South Wales, and its implications with respect to soil acidity

Soil Research ◽  
1997 ◽  
Vol 35 (4) ◽  
pp. 863 ◽  
Author(s):  
I. P. Little

Red gradational soils at Batlow, in New South Wales, which are used for apple growing, have acid subsoils with exchangeable aluminium (Al) frequently in excess of exchangeable calcium (Ca). There is often inadequate Ca in the fruit cortex of post-harvest apples to maintain good fruit quality and this can lead to losses in cool-store. It is possible that Al in these acid subsoils has interfered with Ca uptake by the trees. The excessive use of nitrogenous fertilisers leads to soil acidity, and it was thought likely that this was exacerbating the subsoil acidity common in the district. In October 1992, soil analysis detected considerable ammonium in the surface 0·3 m at orchard sites at Batlow monitored for mineral nitrogen (N). This probably came from heavy spring dressings of fertiliser. One site examined in detail showed that about half of the ammonium had disappeared by January 1993, but a large nitrate envelope appeared with a peak at 0·6 m which in turn disappeared by April that year. This establishes that heavy applications of ammonium are nitrified, leached into the subsoil, and lost. Under such a high N regime, orchard soil profiles should be more acid than adjacent forest soils. However, it was found that the acidity of the surface soil was less, and the exchangeable Ca greater in the orchard soils, compared with soil profiles in the adjacent eucalypt forest, although amelioration of the subsoils had not occurred. Samples taken from representative sites at Batlow, at the 0–0·1, 0·1–0·2, and 0·3–0·4 m depths, were dosed with ammonium sulfate and leached with water in the laboratory for 23 days in a free-draining environment. Nitrate and ammonium were determined in the leachates. At the end of the experiment, the pH and exchangeable Ca, Mg, and Mn were determined in the leached samples. Only the neutral surface soils were able to nitrify ammonium effectively and nitrification was positively correlated with pH, and with exchangeable Ca and Mg. From this it is argued that the acidity produced by the addition of ammonium sulfate or urea will be nitrified in the surface but the acidity produced will be neutralised, provided it is accompanied by an adequate dressing of lime. Ammonium tends to remain in the surface soil, but if leached, it will not be nitrified in the subsoil. Nitrate leached into the subsoil will not be acid-forming but, if denitrified, may help to reduce acidity. For this work, the soil pH was measured in 1 KCl. So that readers can refer this to the pH in 0·01 CaCl2, a relationship was established between the two measures.


2007 ◽  
Vol 47 (2) ◽  
pp. 184 ◽  
Author(s):  
C. M. Evans ◽  
B. J. Scott

Documentation of the chemical fertility status of the soils is sparse for the western and central-western wheatbelt of New South Wales, Australia. We examined properties of the surface soils (0–10 cm) from central-western NSW by collating two published and nine unpublished datasets of soil analyses representing about 2800 soil samples. The emphasis was on the red soils used extensively for cropping. The surface soils of central-western NSW have low phosphorus (47% of soils) and sulfur (70% of soils <5 mg S/kg using KCl-40 analysis) status and commonly have organic carbon contents of about 1%. Surface soil acidity was a substantial problem with 56% of soils (0–10 cm) having a pHCa <5.0. Sodic and dispersive soils are also of concern in this area and these soils have received little attention or research. Approximately 5% of surface (0–10 cm) soils had an exchangeable sodium percentage of ≥6% (sodic). Salinity of surface soils was of minor significance compared with other soil problems in the area, although isolated areas occur. These results indicated that lime applications in this area are likely to benefit crop and pasture production. Additional use of phosphorus and sulfur fertilisers and agricultural practices which increase or maintain organic carbon will also need to be adopted to improve pasture and crop production. The use of gypsum and/or lime on sodic soils may also need to be addressed. As a priority, we suggest that the benefits of lime application to crop yield be examined. The application of lime to the 0–10 cm soil depth should ultimately arrest acidification of the subsurface soil (10–20 cm depth) through downward movement of the lime effect. Further examination of gypsum applications to dispersive sodic soils and the evaluation of sulfur deficiency in the field for pastures and canola are also priority areas of likely agricultural relevance.



Soil Research ◽  
2004 ◽  
Vol 42 (8) ◽  
pp. 905 ◽  
Author(s):  
S. Graham ◽  
B. R. Wilson ◽  
N. Reid ◽  
H. Jones

Scattered paddock trees are widespread throughout rural Australia but their effect on soil conditions has received only limited research attention. This study investigated the influence of 3 Eucalyptus species on surface soil properties on different parent materials at both stocked and unstocked sites on the Northern Tablelands of New South Wales. Mineral soil samples to a depth of 5 cm were collected at intervals up to twice the canopy radius away from tree trunks and litter samples were collected at corresponding points. Mineral soils were analysed for pH (CaCl2), organic carbon (C), and extractable phosphorus (P) concentration, while for the litter samples, P, sulfur, cations, and ash alkalinity were determined. Stocking with sheep and cattle increased surface soil acidity and C and P concentrations at each location. However, soils under E. melliodora and E. viminalis showed higher pH and increased C and P concentrations close to the tree stem irrespective of grazing. Soils under E. caliginosa, while having similar patterns of C and P, showed variable acidity patterns with instances of lower pH close to the tree stem. Spatial patterns in soil acidity were associated with the ash alkalinity of litter, indicating litter as a source of alkalinity addition to the soil surface, although different patterns of soil pH could not be fully explained by litter ash alkalinity alone. The close correlation of litter Ca content with ash alkalinity suggests that this element might be a suitable indicator of the acid amelioration capacity of different tree species.



1963 ◽  
Vol 3 (10) ◽  
pp. 190 ◽  
Author(s):  
JD Colwell

The usefulness of five contrasting methods of soil analysis for estimating the phosphorus fertilizer requirements of wheat in southern New South Wales has been investigated, using yield data provided by 27 field experiments. Because the level of yield of wheat is strongly affected by seasonal environmental conditions poor correlations are obtained between soil analysis and absolute or relative yield of wheat, Much better and often significant correlations are obtained between soil analysis and the absolute increase in yield from fertilizer application. The best correlations were obtained with an 0.5M NaHCO3 extraction of soil phosphorus. A regression response surface calculated from these relationships provides a method for making direct estimates of fertilizer requirements for maximum economic return to farmers under average climatic conditions. The precision of these estimates is limited more by the flatness of the response surface and uncontrolled variation in the field data, than by inadequacies in the representation of available phosphorus by the NaHCO3 analysis.





1990 ◽  
Vol 38 (1) ◽  
pp. 1 ◽  
Author(s):  
PG Kodela

The modern pollen spectra for Eucalyptus forest and rainforest communities were investigated from 19 sites in the Robertson area on the Central Tablelands of New South Wales. Cluster and discriminant analyses were applied to analyse pollen distribution from within and from outside warm temperate rainforest stands and tall open eucalypt forest stands. Pollen abundance is compared with a number of plant abundance estimates of taxa within forests to study pollen representation at the forest scale. Pollen of Doryphora, Polyosma, Pittosporum, Hymenanthera, Tasmannia, Asclepiadaceae and most rainforest taxa investigated are poorly represented, while sclerophyll and open-ground taxa, particularly Eucalyptus, are better represented. The pollen of many native taxa do not appear to be well dispersed, and local pollen is commonly outweighed by pollen from regional sources. Pollen representation varied between taxa and sites, with factors such as vegetation structure, plant distribution, topography and disturbance influencing pollen representation.



1989 ◽  
Vol 29 (6) ◽  
pp. 849 ◽  
Author(s):  
IG Ferris ◽  
WL Felton ◽  
JF Holland ◽  
MS Bull

Grain sorghum was sown at 2 sites at Tamworth in northern New South Wales in 1980 in order to examine the influence of fallow tillage practices and post harvest cultivation on the persistence of atrazine. In a non-cracking red clay (pH 5.7) atrazine (3.2 kg/ha) was applied both to the sorghum fallow and at sowing (1.8 kg/ha). The concentration of carryover atrazine 3 months after sorghum harvest was 0.11 µg/g in the 0-5 cm mil layer and 0.06 µg/g in the 5-15 cm layer. By contrast, the same treatment resulted in 0.61 and 0.52 µg/g in the 0-5 and 5-15 cm zones of a grey clay (pH 7.5). Cultivation after the sorghum was harvested reduced the atrazine residue in the surface soil (0-5 cm) by 20-40%, depending on the initial rate of application. There was no associated increase in the 5-15 cm zone. Despite the reduction in the amount of atrazine residue, cultivation increased the severity of atrazine injury to wheat sown at the grey clay site. There was no evidence of phytotoxicity at the red clay site.



Soil Research ◽  
1997 ◽  
Vol 35 (5) ◽  
pp. 1165 ◽  
Author(s):  
Bernd G. Lottermoser

Total heavy metal concentrations [cobalt (Co), chromium (Cr), copper(Cu), iron (Fe), mangnese (Mn), nickel (Ni), lead (Pb), and zinc (Zn)]were determined in surface soil samples from Port Macquarie, New South Wales,Australia. Composite topsoil samples (0–10 cm depth) had mean values(per kg) of 13 mg Co, 1020 mg Cr, 59 mg Cu, 136·7 g Fe, 719 mg Mn, 149mg Ni, 20 mg Pb, and 47 mg Zn. The topsoils were generally characterised by alow pH (3·8–5·2) and a mineralogy dominated by haematite,magnetite, quartz, and kaolinite. Chromium was predominantly present in thetopsoils as Cr3+ in microcrystalline chromite(FeCr2O4) and, to a lesser degree,in kaolinite and haematite. Differences in Cr soil concentrations with depthwere due to variations in the relative abundance of the various soilcomponents, rather than Cr3+ mobility within the soilprofile. The elevated heavy metal concentrations are the result of soildevelopment over metal-rich bedrock (serpentinite matrix melange) andassociated enrichment of relatively immobile elements (Cr, Fe, Ni) in theresidual soil profile. The ANZECC and NH&MRC (Australian and New ZealandEnvironment and Conservation Council and National Health & MedicalResearch Council) environmental investigation limits were exceeded for100% of the sample sites for Cr, 47% for Cu, 61% for Mn,and 58% for Ni.



1992 ◽  
Vol 40 (1) ◽  
pp. 13 ◽  
Author(s):  
DJ Barrett ◽  
JE Ash

Rainforest, ecotone and eucalypt forest species were grown for 22 weeks in glasshouse conditions under light, water and nutrient treatments. Plant biomass, leaf area and leaf biomass per plant increased in Eucalyptus sieberi, Eucalyptus fastigata, Pittosporum undulatum, Callicoma serratifolia, Elaeocarpus reticulatus, Backhousia myrtifolia and Ceratopetalum apetalum at high irradiance (1230-1670 μ-mol PAR m-2 s-1). Both E. sieberi and E. fastigata inhabit the relatively high light environments of northern aspects, upper southern aspects and ridge tops in the gully systems of south coastal New South Wales. Callicoma serratifolia, P. undulatum and E reticulatus are pioneer species of the ecotone around rainforest patches, and B. myrtifolia and C. apetalum are rainforest canopy species. Mean plant biomass under high irradiance was ranked: eucalypt species > ecotone species and B. myrtifolia > C. apetalum. At low irradiance (200-530 μ-mol PAR m-2 s-1) the trend observed was reversed where rainforest canopy and ecotone species produced greater plant biomass. Plant response to different water and nutrient treatments under glasshouse conditions showed that, while the light environment primarily governed plant response, interaction between treatments occurred which resulted in maximum plant biomass at relatively high levels of soil moisture and nutrients. Carbon partitioning was used as an indication of relative response to light treatments. The proportion of plant mass partitioned to leaves did not change between experimental treatments. The magnitude of the response of leaf area ratio and specific leaf weight to light treatment, however, was ranked: eucalypt species > ecotone species > rainforest canopy species. This suggested that species naturally growing outside the rainforest canopy maximised leaf area in proportion to plant mass for a given irradiance, presumably to maintain high growth rates.



Soil Research ◽  
2013 ◽  
Vol 51 (8) ◽  
pp. 668 ◽  
Author(s):  
Brian R. Wilson ◽  
Vanessa E. Lonergan

We examined soil organic carbon (SOC) concentration (mg g–1) and total organic carbon (TOC) stock (Mg ha–1 to 30 cm soil depth) in three pasture systems in northern New South Wales: improved pasture, native pasture, and lightly wooded pasture, at two sampling times (2009 and 2011). No significant difference was found in SOC or TOC between sample times, suggesting that under the conditions we examined, neither 2 years nor an intervening significant rainfall event was sufficient to change the quantity or our capacity to detect SOC, and neither represented a barrier to soil carbon accounting. Low fertility, lightly wooded pastures had a slightly but significantly lower SOC concentration, particularly in the surface soil layers. However, no significant differences in TOC were detected between the three pasture systems studied, and from a carbon estimation perspective, they represent one, single dataset. A wide range in TOC values existed within the dataset that could not be explained by environmental factors. The TOC was weakly but significantly correlated with soil nitrogen and phosphorus, but a more significant pattern seemed to be the association of high TOC with proportionally larger subsoil (0.1–0.3 m) organic carbon storage. This we attribute to historical, long-term rather than contemporary management. Of the SOC fractions, particulate organic carbon (POC) dominated in the surface layers but diminished with depth, whereas the proportion of humic carbon (HUM) and resistant organic carbon (ROC) increased with soil depth. The POC did not differ between the pasture systems but native pasture had larger quantities of HUM and ROC, particularly in the surface soil layers, suggesting that this pasture system tends to accumulate organic carbon in more resistant forms, presumably because of litter input quality and historical management.



1986 ◽  
Vol 26 (5) ◽  
pp. 587 ◽  
Author(s):  
M Conyers

Surface soil samples (0-10 cm) from a range of soil types were collected in south-eastern New South Wales. Linear regression and analysis of variance were used to establish that, at a given pH (0.01M CaCl2), the amount of neutral salt exchangeable aluminium in surface soils tends to increase with increasing average annual rainfall. Where aluminium toxicity is a factor limiting plant growth, soils in higher rainfall areas will generally require higher pH for the removal of aluminium from the cation exchange complex.



Sign in / Sign up

Export Citation Format

Share Document