Effect of tillage practice on the persistence of atrazine in two contrasting soils in northern New South Wales

1989 ◽  
Vol 29 (6) ◽  
pp. 849 ◽  
Author(s):  
IG Ferris ◽  
WL Felton ◽  
JF Holland ◽  
MS Bull

Grain sorghum was sown at 2 sites at Tamworth in northern New South Wales in 1980 in order to examine the influence of fallow tillage practices and post harvest cultivation on the persistence of atrazine. In a non-cracking red clay (pH 5.7) atrazine (3.2 kg/ha) was applied both to the sorghum fallow and at sowing (1.8 kg/ha). The concentration of carryover atrazine 3 months after sorghum harvest was 0.11 µg/g in the 0-5 cm mil layer and 0.06 µg/g in the 5-15 cm layer. By contrast, the same treatment resulted in 0.61 and 0.52 µg/g in the 0-5 and 5-15 cm zones of a grey clay (pH 7.5). Cultivation after the sorghum was harvested reduced the atrazine residue in the surface soil (0-5 cm) by 20-40%, depending on the initial rate of application. There was no associated increase in the 5-15 cm zone. Despite the reduction in the amount of atrazine residue, cultivation increased the severity of atrazine injury to wheat sown at the grey clay site. There was no evidence of phytotoxicity at the red clay site.


1982 ◽  
Vol 22 (117) ◽  
pp. 310 ◽  
Author(s):  
JF Holland ◽  
DW McNamara

Six experiments were done in northern New South Wales over three seasons to study the effect of weeds on the yield of dry-land grain sorghum and methods of weed control. The relation between crop row spacing and weed control by inter-row cultivation or atrazine (2-chloro-4-ethylamino- 6-isopropylamino-l,3,5-triazine), or both was studied. Where the site yield was high because of favourable growing conditions, an increase in the crop row spacing reduced yield. At low yielding sites, an increase in the row spacing increased yields. At most sites, weed growth was greater with wider row spacings, which resulted in a larger reduction in crop yield where weeds were not removed. Inter-row cultivation reduced weed growth to less than half that of the unweeded controls. Pre-emergent atrazine gave good weed suppression, generally reducing weed growth to less than 10% of the unweeded control when applied at 2.5 kg/ha active ingredient. Post-emergent atrazine was much less effective. Inter-row cultivation combined with a band of pre-emergent atrazine over the crop row was as effective in weed control as an overall spray of pre-emergent atrazine.



1992 ◽  
Vol 43 (1) ◽  
pp. 105 ◽  
Author(s):  
DF Herridge ◽  
JF Holland

The effects of tillage practice and double cropping on growth, yield and N economies of summer crops were examined in field experiments near Tamworth, northern New South Wales. Sorghum, sunflower, soybean, mungbean, cowpea and pigeon pea were sown into alkaline, black earth soils which contained either high (Site A, sown January 1983), moderate (Site B, sown December 1983), or low concentrations of nitrate (Site C, sown December 1984). During the previous winters, the land had been sown to wheat (double crop) or fallowed using cultivation or no-tillage practices. At Sites A and B, dry matter yields, averaged over all crops, were increased by 34 and 14% under no-tillage. Average increases in grain yields at the two sites were 22 and 11%. At Site C, tillage practice did not affect yields. Soybean showed the greatest responses to no-tillage. Increases in grain yields were 46, 15 and 18% for Sites A, B and C respectively. The least responsive legume was mungbean. Yields of sorghum were increased by 41% at Site A; responses at Sites B and C ranged between a 9% decrease and a 7% increase. With double cropping, grain yields were, on average, 18 (Site A), 81 (Site B) and 72% (Site C) of the yields in the cultivated (fallow) plots. However, when comparisons were made for the 12 month periods, i.e. wheat and summer crops v. fallow and summer crops, production was more than doubled at Site B and tripled at Site C, compared with the cultivated fallow. Significant in the responses to double cropping were the 192 (Site B) and 230 mm rainfalls (Site C) during November and December that replenished the soil profile with water to a depth of >0.75 m. Assessments of soybean N2 fixation using the ureide method indicated large effects of site and season on the proportion of plant N derived from N2 fixation (range, 0-0.83), on the amount of N2 fixed (range, 0-233 kg N ha-1) and on the N balance as a result of the cropping (range, -69 to +45 kg N ha-1).



1992 ◽  
Vol 43 (1) ◽  
pp. 123 ◽  
Author(s):  
JF Holland ◽  
DF Herridge

Two crops of sorghum were grown in successive summer seasons at 3 sites on alkaline, black earth soils near Tamworth, New South Wales following either soyabeans, mungbeans, cowpeas, pigeonpeas, sunflowers or sorghum. Tillage practices were cultivation using a chisel plough and scarifier, and no-tillage using atrazine and glyphosate for weed control. Variation in grain yield (1.0-8.4 t/ha) was largely associated with variation in Dec.-Feb. rainfall (128-475 mm). An average of 15 kg grain/ha was produced for each mm water above the threshold value of 83 mm. At the high (Site A) and low (Site C) N-fertility sites, the rotation effect on sorghum yields was significant for one year, but did not carry over to a second sorghum crop. Cowpeas were the best rotation crop, followed by sunflowers mungbeans and soyabeans. At the low N-fertility site, sorghum following cowpeas outyielded sorghum after sorghum by 47% in the unfertilized plots and by an aExperiments to examine the effects of tillage practice and crop sequence on the production of sorghum grain in northern New South Wales are described. Two crops of sorghum were grown in successive seasons at three sites on alkaline, black earth soils near Tamworth following either soybean, mungbean, cowpea, pigeonpea, sunflower or sorghum. Tillage practices were cultivation using a chisel plough and scarifier, and no-tillage using atrazine and glyphosate for weed control. Variation in grain yield (1.0 to 8.4 t/ha) was largely associated with variation in December-February rainfall (128 to 475 mm). We calculated that an average of 15 kg/ha of grain was produced for each mm water above the threshold value of 83 rnm. At the high (Site A) and low (Site C) N-fertility sites, the rotation effect on sorghum yields was significant for one year, but did not carry over to a second sorghum crop. Cowpea was the best rotation crop, followed by sunflower, mungbean and soybean. At the low N-fertility site, sorghum following cowpea outyielded sorghum after sorghum by 47% in the unfertilized plots and by an average of 27% over all N treatments. It is likely that the increased yields of sorghum in the rotation plots resulted from higher levels of plant available N from both N2 fixation activity (legumes only) and reduced amounts of N removed with the harvested grain (particularly cowpea and sunflower). At the non-responsive, moderate-fertility Site B, water, rather than N, was limiting. Responses to no-tillage were apparent only in the very dry 1984/85 season (December to February rainfall, 42% below average). In the other three seasons, the cultivated crops outyielded the no-tilled crops or the differences between the two practices were not significant.



Soil Research ◽  
1997 ◽  
Vol 35 (5) ◽  
pp. 1165 ◽  
Author(s):  
Bernd G. Lottermoser

Total heavy metal concentrations [cobalt (Co), chromium (Cr), copper(Cu), iron (Fe), mangnese (Mn), nickel (Ni), lead (Pb), and zinc (Zn)]were determined in surface soil samples from Port Macquarie, New South Wales,Australia. Composite topsoil samples (0–10 cm depth) had mean values(per kg) of 13 mg Co, 1020 mg Cr, 59 mg Cu, 136·7 g Fe, 719 mg Mn, 149mg Ni, 20 mg Pb, and 47 mg Zn. The topsoils were generally characterised by alow pH (3·8–5·2) and a mineralogy dominated by haematite,magnetite, quartz, and kaolinite. Chromium was predominantly present in thetopsoils as Cr3+ in microcrystalline chromite(FeCr2O4) and, to a lesser degree,in kaolinite and haematite. Differences in Cr soil concentrations with depthwere due to variations in the relative abundance of the various soilcomponents, rather than Cr3+ mobility within the soilprofile. The elevated heavy metal concentrations are the result of soildevelopment over metal-rich bedrock (serpentinite matrix melange) andassociated enrichment of relatively immobile elements (Cr, Fe, Ni) in theresidual soil profile. The ANZECC and NH&MRC (Australian and New ZealandEnvironment and Conservation Council and National Health & MedicalResearch Council) environmental investigation limits were exceeded for100% of the sample sites for Cr, 47% for Cu, 61% for Mn,and 58% for Ni.



Soil Research ◽  
1997 ◽  
Vol 35 (4) ◽  
pp. 863 ◽  
Author(s):  
I. P. Little

Red gradational soils at Batlow, in New South Wales, which are used for apple growing, have acid subsoils with exchangeable aluminium (Al) frequently in excess of exchangeable calcium (Ca). There is often inadequate Ca in the fruit cortex of post-harvest apples to maintain good fruit quality and this can lead to losses in cool-store. It is possible that Al in these acid subsoils has interfered with Ca uptake by the trees. The excessive use of nitrogenous fertilisers leads to soil acidity, and it was thought likely that this was exacerbating the subsoil acidity common in the district. In October 1992, soil analysis detected considerable ammonium in the surface 0·3 m at orchard sites at Batlow monitored for mineral nitrogen (N). This probably came from heavy spring dressings of fertiliser. One site examined in detail showed that about half of the ammonium had disappeared by January 1993, but a large nitrate envelope appeared with a peak at 0·6 m which in turn disappeared by April that year. This establishes that heavy applications of ammonium are nitrified, leached into the subsoil, and lost. Under such a high N regime, orchard soil profiles should be more acid than adjacent forest soils. However, it was found that the acidity of the surface soil was less, and the exchangeable Ca greater in the orchard soils, compared with soil profiles in the adjacent eucalypt forest, although amelioration of the subsoils had not occurred. Samples taken from representative sites at Batlow, at the 0–0·1, 0·1–0·2, and 0·3–0·4 m depths, were dosed with ammonium sulfate and leached with water in the laboratory for 23 days in a free-draining environment. Nitrate and ammonium were determined in the leachates. At the end of the experiment, the pH and exchangeable Ca, Mg, and Mn were determined in the leached samples. Only the neutral surface soils were able to nitrify ammonium effectively and nitrification was positively correlated with pH, and with exchangeable Ca and Mg. From this it is argued that the acidity produced by the addition of ammonium sulfate or urea will be nitrified in the surface but the acidity produced will be neutralised, provided it is accompanied by an adequate dressing of lime. Ammonium tends to remain in the surface soil, but if leached, it will not be nitrified in the subsoil. Nitrate leached into the subsoil will not be acid-forming but, if denitrified, may help to reduce acidity. For this work, the soil pH was measured in 1 KCl. So that readers can refer this to the pH in 0·01 CaCl2, a relationship was established between the two measures.



Soil Research ◽  
2013 ◽  
Vol 51 (8) ◽  
pp. 668 ◽  
Author(s):  
Brian R. Wilson ◽  
Vanessa E. Lonergan

We examined soil organic carbon (SOC) concentration (mg g–1) and total organic carbon (TOC) stock (Mg ha–1 to 30 cm soil depth) in three pasture systems in northern New South Wales: improved pasture, native pasture, and lightly wooded pasture, at two sampling times (2009 and 2011). No significant difference was found in SOC or TOC between sample times, suggesting that under the conditions we examined, neither 2 years nor an intervening significant rainfall event was sufficient to change the quantity or our capacity to detect SOC, and neither represented a barrier to soil carbon accounting. Low fertility, lightly wooded pastures had a slightly but significantly lower SOC concentration, particularly in the surface soil layers. However, no significant differences in TOC were detected between the three pasture systems studied, and from a carbon estimation perspective, they represent one, single dataset. A wide range in TOC values existed within the dataset that could not be explained by environmental factors. The TOC was weakly but significantly correlated with soil nitrogen and phosphorus, but a more significant pattern seemed to be the association of high TOC with proportionally larger subsoil (0.1–0.3 m) organic carbon storage. This we attribute to historical, long-term rather than contemporary management. Of the SOC fractions, particulate organic carbon (POC) dominated in the surface layers but diminished with depth, whereas the proportion of humic carbon (HUM) and resistant organic carbon (ROC) increased with soil depth. The POC did not differ between the pasture systems but native pasture had larger quantities of HUM and ROC, particularly in the surface soil layers, suggesting that this pasture system tends to accumulate organic carbon in more resistant forms, presumably because of litter input quality and historical management.



1994 ◽  
Vol 34 (2) ◽  
pp. 229 ◽  
Author(s):  
WL Felton ◽  
GA Wicks ◽  
SM Welsby

A survey undertaken in northern New South Wales after the 1989 wheat harvest investigated the effects of cultural practices used by dryland farmers on summer weed flora. Only 50% of fallow paddocks surveyed between December and February were weedfree, and by mid January 65% had inadequate stubble cover (<1000 kg/ha) for protection from soil erosion, mainly because of excessive tillage. By February, only 10% of paddocks were being sprayed with a herbicide to control weeds. Examination of 65 uncultivated fallow wheat stubble paddocks and 25 grain sorghum crops identified 87 and 51 different weed species, respectively. In fallow paddocks where no herbicide had been used, 69 and 61 species were found in ungrazed and grazed paddocks, respectively. Where glyphosate had been used the number of species was 37 (grazed) and 39 (ungrazed), and for glyphosate plus atrazine, 23 and 18 species. The number of weed species found in grain sorghum was 29 for cultivated without atrazine, 35 for cultivated with atrazine, and 35 for no-tillage with atrazine, The most important weeds found in fallow were liverseed grass, native millet, common sowthistle, wireweed, and barnyard grasses. Black bindweed was a problem where atrazine had not been used. Native millet was the most abundant species where atrazine had been applied. In grain sorghum the most common broadleaf weeds for cultivated paddocks with no atrazine treatment were Tribulus spp., Australian bindweed, pigweed, and Bathurst burr, while the most common grass weeds were barnyard grasses, liverseed grass, stinkgrass, and native millet. When cultivation plus atrazine was used, barnyard grasses, native millet, wild oats, and liverseed grass were the most common weeds. In minimum tillage or no-tillage paddocks treated with atrazine, native millet, Queensland blue grass, liverseed grass, common sowthistle, Australian bindweed, and windmill grass were the most common weeds.



1986 ◽  
Vol 26 (5) ◽  
pp. 587 ◽  
Author(s):  
M Conyers

Surface soil samples (0-10 cm) from a range of soil types were collected in south-eastern New South Wales. Linear regression and analysis of variance were used to establish that, at a given pH (0.01M CaCl2), the amount of neutral salt exchangeable aluminium in surface soils tends to increase with increasing average annual rainfall. Where aluminium toxicity is a factor limiting plant growth, soils in higher rainfall areas will generally require higher pH for the removal of aluminium from the cation exchange complex.



2007 ◽  
Vol 47 (2) ◽  
pp. 184 ◽  
Author(s):  
C. M. Evans ◽  
B. J. Scott

Documentation of the chemical fertility status of the soils is sparse for the western and central-western wheatbelt of New South Wales, Australia. We examined properties of the surface soils (0–10 cm) from central-western NSW by collating two published and nine unpublished datasets of soil analyses representing about 2800 soil samples. The emphasis was on the red soils used extensively for cropping. The surface soils of central-western NSW have low phosphorus (47% of soils) and sulfur (70% of soils <5 mg S/kg using KCl-40 analysis) status and commonly have organic carbon contents of about 1%. Surface soil acidity was a substantial problem with 56% of soils (0–10 cm) having a pHCa <5.0. Sodic and dispersive soils are also of concern in this area and these soils have received little attention or research. Approximately 5% of surface (0–10 cm) soils had an exchangeable sodium percentage of ≥6% (sodic). Salinity of surface soils was of minor significance compared with other soil problems in the area, although isolated areas occur. These results indicated that lime applications in this area are likely to benefit crop and pasture production. Additional use of phosphorus and sulfur fertilisers and agricultural practices which increase or maintain organic carbon will also need to be adopted to improve pasture and crop production. The use of gypsum and/or lime on sodic soils may also need to be addressed. As a priority, we suggest that the benefits of lime application to crop yield be examined. The application of lime to the 0–10 cm soil depth should ultimately arrest acidification of the subsurface soil (10–20 cm depth) through downward movement of the lime effect. Further examination of gypsum applications to dispersive sodic soils and the evaluation of sulfur deficiency in the field for pastures and canola are also priority areas of likely agricultural relevance.



Soil Research ◽  
2004 ◽  
Vol 42 (6) ◽  
pp. 595 ◽  
Author(s):  
Mark A. Rosicky ◽  
Leigh A. Sullivan ◽  
Peter G. Slavich ◽  
Mike Hughes

Soil profiles in 10 persistently bare areas (i.e. scalds), mainly located in coastal backswamps of New South Wales, Australia, were examined for chromium-reducible sulfur content and selected chemical properties. At 5 of the sites, the adjacent paddocks with vegetation cover were also examined. All of the tested sites had been affected by the extensive drainage of the surrounding acid sulfate soil (ASS) landscapes and the consequent oxidation of pyrite. All sites had low pH values in the surface soil layers and these low pH values extended for up to 150 cm into the underlying unoxidised blue/grey pyritic estuarine gels. This can be attributed to the downward diffusion of acidity, either produced in the overlying oxidised zones of these soils or transported laterally across the landscape to these low-lying areas. Acidified unoxidised pyritic zones 120 cm thick can evidently form within several decades after drainage disturbance. At the scalded sites the depth from the soil surface to the main pyritic zone varied from the surface to >200 cm depth, indicating that this variable is not critical to ASS scald formation. For most of the sites examined, the chromium-reducible sulfur contents in the surface soil layers were appreciably higher than those in the immediately underlying soil layers. In most of the vegetated sites the chromium-reducible sulfur content in the surface layers was considerably higher than for the adjacent scalded site. The conditions necessary for pyrite formation (i.e. adequate supplies of organic matter, soluble iron, sulfate, and waterlogging) were found to exist at all sites, and the pyrite accumulations in these surface soil layers are considered to be neo-formed. The vegetated soil-profile pyrite and pH results were very similar to their scalded counterparts except that they had an extra 20–40 cm layer of vegetation and mulch that was missing from the scalded profiles. This indicates that there is considerable potential for more extensive scalding in these ASS areas.



Sign in / Sign up

Export Citation Format

Share Document