scholarly journals Benchmarking nitrous oxide emissions in deciduous tree cropping systems

Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 500 ◽  
Author(s):  
Nigel Swarts ◽  
Kelvin Montagu ◽  
Garth Oliver ◽  
Liam Southam-Rogers ◽  
Marcus Hardie ◽  
...  

Nitrous oxide (N2O) emissions contribute 6% of the global warming effect and are derived from the activity of soil-based microorganisms involved in nitrification and denitrification processes. There is a paucity of greenhouse gas emissions data for Australia’s horticulture industry. In this study we investigated N2O flux from two deciduous fruit tree crops, apples and cherries, in two predominant growing regions in eastern Australia, the Huon Valley in southern Tasmania (Lucaston – apples and Lower Longley – cherries), and high altitude northern New South Wales (Orange – apples and Young – cherries). Estimated from manual chamber measurements over a 12-month period, average daily emissions were very low ranging from 0.78gN2O-Nha–1day–1 in the apple orchard at Lucaston to 1.86gN2O-Nha–1day–1 in the cherry orchard in Lower Longley. Daily emissions were up to 50% higher in summer (maximum 5.27gN2O-Nha–1day–1 at Lower Longley) than winter (maximum 2.47gN2O-Nha–1day–1 at Young) across the four trial orchards. N2O emissions were ~40% greater in the inter-row than the tree line for each orchard. Daily flux rates were used as a loss estimate for annual emissions, which ranged from 298gN2O-Nha–1year–1 at Lucaston to 736gN2O-Nha–1year–1 at Lower Longley. Emissions were poorly correlated with soil temperature, volumetric water content, water filled porosity, gravimetric water content and matric potential – with inconsistent patterns between sites, within the tree line and inter-row and between seasons. Stepwise linear regression models for the Lucaston site accounted for less than 10% of the variance in N2O emissions, for which soil temperature was the strongest predictor. N2O emissions in deciduous tree crops were among the lowest recorded for Australian agriculture, most likely due to low rates of N fertiliser, cool temperate growing conditions and highly efficient drip irrigation systems. We recommend that optimising nutrient use efficiency with improved drainage and a reduction in soil compaction in the inter-row will facilitate further mitigation of N2O emissions.

2021 ◽  
Vol 13 (9) ◽  
pp. 4928
Author(s):  
Alicia Vanessa Jeffary ◽  
Osumanu Haruna Ahmed ◽  
Roland Kueh Jui Heng ◽  
Liza Nuriati Lim Kim Choo ◽  
Latifah Omar ◽  
...  

Farming systems on peat soils are novel, considering the complexities of these organic soil. Since peat soils effectively capture greenhouse gases in their natural state, cultivating peat soils with annual or perennial crops such as pineapples necessitates the monitoring of nitrous oxide (N2O) emissions, especially from cultivated peat lands, due to a lack of data on N2O emissions. An on-farm experiment was carried out to determine the movement of N2O in pineapple production on peat soil. Additionally, the experiment was carried out to determine if the peat soil temperature and the N2O emissions were related. The chamber method was used to capture the N2O fluxes daily (for dry and wet seasons) after which gas chromatography was used to determine N2O followed by expressing the emission of this gas in t ha−1 yr−1. The movement of N2O horizontally (832 t N2O ha−1 yr−1) during the dry period was higher than in the wet period (599 t N2O ha−1 yr−1) because of C and N substrate in the peat soil, in addition to the fertilizer used in fertilizing the pineapple plants. The vertical movement of N2O (44 t N2O ha−1 yr−1) was higher in the dry season relative to N2O emission (38 t N2O ha−1 yr−1) during the wet season because of nitrification and denitrification of N fertilizer. The peat soil temperature did not affect the direction (horizontal and vertical) of the N2O emission, suggesting that these factors are not related. Therefore, it can be concluded that N2O movement in peat soils under pineapple cultivation on peat lands occurs horizontally and vertically, regardless of season, and there is a need to ensure minimum tilling of the cultivated peat soils to prevent them from being an N2O source instead of an N2O sink.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 512 ◽  
Author(s):  
Guangdi D. Li ◽  
Mark K. Conyers ◽  
Graeme D. Schwenke ◽  
Richard C. Hayes ◽  
De Li Liu ◽  
...  

Dryland cereal production systems of south-eastern Australia require viable options for reducing nitrous oxide (N2O) emissions without compromising productivity and profitability. A 4-year rotational experiment with wheat (Triticum aestivum L.)–canola (Brassica napus L.)–grain legumes–wheat in sequence was established at Wagga Wagga, NSW, Australia, in a semiarid Mediterranean-type environment where long-term average annual rainfall is 541mm and the incidence of summer rainfall is episodic and unreliable. The objectives of the experiment were to investigate whether (i) tillage increases N2O emissions and (ii) nitrogen (N) application can improve productivity without increasing N2O emissions. The base experimental design for each crop phase was a split-plot design with tillage treatment (tilled versus no-till) as the whole plot, and N fertiliser rate (0, 25, 50 and 100kgN/ha) as the subplot, replicated three times. This paper reports high resolution N2O emission data under a canola crop. The daily N2O emission rate averaged 0.55g N2O-N/ha.day, ranging between –0.81 and 6.71g N2O-N/ha.day. The annual cumulative N2O-N emitted was 175.6 and 224.3g N2O-N/ha under 0 and 100kgN/ha treatments respectively. There was no evidence to support the first hypothesis that tillage increases N2O emissions, a result which may give farmers more confidence to use tillage strategically to manage weeds and diseases where necessary. However, increasing N fertiliser rate tended to increase N2O emissions, but did not increase crop production at this site.


Soil Research ◽  
2018 ◽  
Vol 56 (3) ◽  
pp. 296 ◽  
Author(s):  
Guangdi D. Li ◽  
Graeme D. Schwenke ◽  
Richard C. Hayes ◽  
Hongtao Xing ◽  
Adam J. Lowrie ◽  
...  

Nitrification and urease inhibitors have been used to reduce nitrous oxide (N2O) emissions and increase nitrogen use efficiency in many agricultural systems. However, their agronomic benefits, such as the improvement of grain yield, is uncertain. A two-year field experiment was conducted to (1) investigate whether the use of 3,4-dimethylpyrazole phosphate (DMPP) or N-(n-butyl) thiophosphoric triamide (NBPT) can reduce N2O emissions and increase grain yield and (2) explore the financial benefit of using DMPP or NBPT in a rain-fed cropping system in south-eastern Australia. The experiment was conducted at Wagga Wagga, New South Wales, Australia with wheat (Triticum aestivum L.) in 2012 and canola (Brassica napus L.) in 2013. Results showed that urea coated with DMPP reduced the cumulative N2O emission by 34% for a wheat crop in 2012 (P < 0.05) and by 62% for a canola crop in 2013 (P < 0.05) compared with normal urea, but urea coated NBPT had no effect on N2O emission for the wheat crop in 2012. Neither nitrification nor urease inhibitors increased crop yields because the low rainfall experienced led to little potential for gross N loss through denitrification, leaching or volatilisation pathways. In such dry years, only government or other financial incentives for N2O mitigation would make the use of DMPP with applied N economically viable.


2014 ◽  
Vol 14 (14) ◽  
pp. 20417-20460 ◽  
Author(s):  
H. Huang ◽  
J. Wang ◽  
D. Hui ◽  
D. R. Miller ◽  
S. Bhattarai ◽  
...  

Abstract. Increases in observed atmospheric concentrations of the long-lived greenhouse gas, nitrous oxide (N2O), have been well documented. However, information on event-related instantaneous emissions during fertilizer applications is lacking. With the development of fast-response N2O analyzers, the eddy covariance (EC) technique can be used to gather instantaneous measurements of N2O concentrations to quantify the exchange of nitrogen between the soil and atmosphere. The objectives of this study were to evaluate the performance of a new EC system, to measure the N2O flux with the system, and finally to examine relationships of the N2O flux with soil temperature, soil moisture, precipitation, and fertilization events. We assembled an EC system that included a sonic anemometer and a fast-response N2O analyzer (quantum cascade laser spectrometer) in a cornfield in Nolensville, Tennessee during the 2012 corn growing season (4 April–8 August). Fertilizer amounts totaling 217 kg N ha−1 were applied to the experimental site. The precision of the instrument was 0.066 ppbv for 10 Hz measurements. The seasonal mean detection limit of the N2O flux measurements was 2.10 ng N m−2 s−1. This EC system can be used to provide reliable N2O flux measurements. The cumulative emitted N2O for the entire growing season was 6.87 kg N2O-N ha−1. The 30 min average N2O emissions ranged from 0 to 11 100 μg N2O{-}N m−2 h−1 (mean = 257.5, standard deviation = 817.7). Average daytime emissions were much higher than night emissions (278.8 ± 865.8 vs. 100.0 ± 210.0 μg N2O-N m−2 h−1). Seasonal fluxes were highly dependent on soil moisture rather than soil temperature, although the diurnal flux was positively related to soil temperature. This study was one of the few experiments that continuously measured instantaneous, high-frequency N2O emissions in crop fields over a growing season of more than 100 days.


2014 ◽  
Vol 14 (23) ◽  
pp. 12839-12854 ◽  
Author(s):  
H. Huang ◽  
J. Wang ◽  
D. Hui ◽  
D. R. Miller ◽  
S. Bhattarai ◽  
...  

Abstract. Increases in observed atmospheric concentrations of the long-lived greenhouse gas nitrous oxide (N2O) have been well documented. However, information on event-related instantaneous emissions during fertilizer applications is lacking. With the development of fast-response N2O analyzers, the eddy covariance (EC) technique can be used to gather instantaneous measurements of N2O concentrations to quantify the exchange of nitrogen between the soil and atmosphere. The objectives of this study were to evaluate the performance of a new EC system, to measure the N2O flux with the system, and finally to examine relationships of the N2O flux with soil temperature, soil moisture, precipitation, and fertilization events. An EC system was assembled with a sonic anemometer and a fast-response N2O analyzer (quantum cascade laser spectrometer) and applied in a cornfield in Nolensville, Tennessee during the 2012 corn growing season (4 April–8 August). Fertilizer amounts totaling 217 kg N ha−1 were applied to the experimental site. Results showed that this N2O EC system provided reliable N2O flux measurements. The cumulative emitted N2O amount for the entire growing season was 6.87 kg N2O-N ha−1. Seasonal fluxes were highly dependent on soil moisture rather than soil temperature. This study was one of the few experiments that continuously measured instantaneous, high-frequency N2O emissions in crop fields over a growing season of more than 100 days.


Soil Research ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 810 ◽  
Author(s):  
Iris Vogeler ◽  
Rogerio Cichota

Despite the importance of soil physical properties on water infiltration and redistribution, little is known about the effect of variability in soil properties and its consequent effect on contaminant loss pathways. To investigate the effects of uncertainty and heterogeneity in measured soil physical parameters on the simulated movement of water and the prediction of nitrous oxide (N2O) emissions, we set up the Agricultural Production Systems sIMulator (APSIM) for different soil types in three different regions of New Zealand: the Te Kowhai silt loam and the Horotiu silt loam in the Waikato region, and the Templeton silt loam in the Canterbury region, and the Otokia silt loam and the Wingatui silt loam in the Otago region. For each of the soil types, various measured soil profile descriptions, as well as those from a national soils database (S-map) were used when available. In addition, three different soil water models in APSIM with different complexities (SWIM2, SWIM3, and SoilWat) were evaluated. Model outputs were compared with temporal soil water content measurements within the top 75mm at the various experimental sites. Results show that the profile description, as well as the soil water model used affected the prediction accuracy of soil water content. The smallest difference between soil profile descriptions was found for the Templeton soil series, where the model efficiency (NSE) was positive for all soil profile descriptions, and the RMSE ranged from 0.055 to 0.069m3/m3. The greatest difference was found for the Te Kowhai soil, where only one of the descriptions showed a positive NSE, and the other two profile descriptions overestimated measured topsoil water contents. Furthermore, it was shown that the soil profile description highly affects N2O emissions from urinary N deposited during animal grazing. However, the relative difference between the emissions was not always related to the accuracy of the measured soil water content, with soil organic carbon content also affecting emissions.


2004 ◽  
Vol 84 (3) ◽  
pp. 339-352 ◽  
Author(s):  
Philippe Rochette, Régis R. Simard ◽  
Noura Ziadi, Michel C. Nolin ◽  
Athyna N. Cambouris

Nitrous oxide production and emission in agricultural soils are often influenced by soil physical properties and mineral N content. An experiment was initiated on a commercial farm located in the St. Lawrence Lowlands to measure the effects of recommended (150 kg N ha-1) and excessive (250 kg N ha-1) rates of anhydrous ammonia on atmospheric composition (O2, CO2, CH4 and N2O) and N2O emissions in soils of contrasting textures (sandy loam, clay loam and clay) cropped to corn. N2O emissions and soil temperature, water content and atmospheric composition were measured from post-harvest tillage to the first snowfall during the first year (2000), and from spring thaw to mid-July during the following 2 yr. Episodes of high N2O concentrations and surface emissions coincided with periods of high soil water content shortly following rainfall events when soil O2 concentrations were lowest. The convergence of indicators of restricted soil aeration at the time of highest N2O production suggested that denitrification was a major contributor to N2O emissions even in soils receiving an NH4-based fertilizer. Soil texture had a significant influence on soil N2O concentration and emission rates on several sampling dates. However, the effect was relatively small and it was not consistent, likely because of complex interactions between soil physical properties and N2O production, consumption and diffusion processes. Nitrous oxide emissions during the study were not limited by soil N availability as indicated by similar fluxes at recommended and excessive rates of anhydrous ammonia. Finally, greater N2O emissions in 2001 than in 2002 stress the importance of multiyear studies to evaluate the effect of annual weather conditions on soil N2O dynamics. Key words: Greenhouse gasses, denitrification


Soil Research ◽  
2012 ◽  
Vol 50 (2) ◽  
pp. 125 ◽  
Author(s):  
Tony J. van der Weerden ◽  
Francis M. Kelliher ◽  
Cecile A. M. de Klein

Nitrous oxide (N2O) emissions from agricultural soils have been estimated to comprise about two-thirds of the biosphere’s contribution of this potent greenhouse gas. In pasture systems grazed by farmed animals, where substrate is generally available, spatial variation in emissions, in addition to that cause by the patchiness of urine deposition, has been attributed to soil aeration, as governed by gas diffusion. However, this parameter is not readily measured, and the soil’s water-filled pore space (WFPS) has often been used as a proxy, despite gas diffusion in soils depending on the volumetric fractions of water and air. With changing water content, these fractions will reflect the soil’s pore size distribution. The aims of this study were: (i) to determine if the pore size distribution of two pastoral soils explains previously observed differences in N2O emissions under field conditions, and (ii) to assess the most appropriate soil water/gas diffusion metric for estimating N2O emissions. The N2O emissions were measured from intact cores of two soils (one classified as well drained and one as poorly drained) that had been sampled to a depth of 50 mm beneath grazed pasture. Nitrogen (N, 500 kg N/ha) was applied to soil cores as aqueous nitrate solution, and the cores were drained under controlled conditions at a constant temperature. The poorly drained soil had a larger proportion of macropores (23.5 v. 18.7% in the well-drained soil), resulting in more rapid drainage and increased pore continuity, thereby reducing the duration of anaerobicity, and leading to lower N2O emissions. Emissions were related to three soil water proxies including WFPS, volumetric water content (VWC), and matric potential (MP), and to relative diffusion (RD). All parameters showed highly significant relationships with N2O emissions (P < 0.001), with RD, WFPS, VWC, and MP accounting for 59, 72, 88, and 93% of the variability, respectively. As VWC is more readily determined than MP, the former is potentially more suitable for estimating N2O emission from different soils across a range of time and space scales under field conditions.


Soil Research ◽  
2012 ◽  
Vol 50 (7) ◽  
pp. 596 ◽  
Author(s):  
Xiaodong Huang ◽  
Peter Grace ◽  
Keith Weier ◽  
Kerrie Mengersen

Time series regression models were used to examine the influence of environmental factors (soil water content and soil temperature) on the emissions of nitrous oxide (N2O) from subtropical soils, by taking into account temporal lagged environmental factors, autoregressive processes, and seasonality for three horticultural crops in a subtropical region of Australia. Fluxes of N2O, soil water content, and soil temperature were determined simultaneously on a weekly basis over a 12-month period in South East Queensland. Annual N2O emissions for soils under mango, pineapple, and custard apple were 1590, 1156, and 2038 g N2O-N/ha, respectively, with most emissions attributed to nitrification. The N2O-N emitted from the pineapple and custard apple crops was equivalent to 0.26 and 2.22%, respectively, of the applied mineral N. The change in soil water content was the key variable for describing N2O emissions at the weekly time-scale, with soil temperature at a lag of 1 month having a significant influence on average N2O emissions (averaged) at the monthly time-scale across the three crops. After accounting for soil temperature and soil water content, both the weekly and monthly time series regression models exhibited significant autocorrelation at lags of 1–2 weeks and 1–2 months, and significant seasonality for weekly N2O emissions for mango crop and for monthly N2O emissions for mango and custard apple crops in this location over this time-frame. Time series regression models can explain a higher percentage of the temporal variation of N2O emission compared with simple regression models using soil temperature and soil water content as drivers. Taking into account seasonal variability and temporal persistence in N2O emissions associated with soil water content and soil temperature may lead to a reduction in the uncertainty surrounding estimates of N2O emissions based on limited sampling effort.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 469 ◽  
Author(s):  
Ryan Farquharson

Laboratory incubations were performed to estimate nitrification rates and the associated nitrous oxide (N2O) emissions under aerobic conditions on a range of soils from National Agricultural Nitrous Oxide Research Program field sites. Significant site-to-site variability in nitrification rates and associated N2O emissions was observed under standardised conditions, indicating the need for site-specific model parameterisation. Generally, nitrification rates and N2O emissions increased with higher water content, ammonium concentration and temperature, although there were exceptions. It is recommended that site-specific model parameterisation be informed by such data. Importantly, the ratio of N2O emitted to net nitrified N under aerobic conditions was small (<0.2% for the majority of measurements) but did vary from 0.03% to 1%. Some models now include variation in the proportion of nitrified N emitted as N2O as a function of water content; however, strong support for this was not found across all of our experiments, and the results demonstrate a potential role of pH and ammonium availability. Further research into fluctuating oxygen availability and the coupling of biotic and abiotic processes will be required to progress the process understanding of N2O emissions from nitrification.


Sign in / Sign up

Export Citation Format

Share Document