Soil structure, soil hydraulic properties and the soil water balance

Soil Research ◽  
1992 ◽  
Vol 30 (3) ◽  
pp. 265 ◽  
Author(s):  
HP Cresswell ◽  
DE Smiles ◽  
J Williams

We review the influence of soil structural change on the fundamental soil hydraulic properties (unsaturated hydraulic conductivity and the soil moisture characteristic) and utilize deterministic modelling to assess subsequent effects on the soil water balance. Soil structure is reflected in the 0 to -100 kPa matric potential section of the soil moisture characteristic with marked changes often occurring in light to medium textured soils' (sands, sandy-loam, loams and clay-loams). The effect of long-term tillage on soil structure may decrease hydraulic conductivity within this matric potential range. The 'SWIM' (Soil Water Infiltration and Movement) simulation model was used to illustrate the effects of long-term conventional tillage and direct drilling systems on the water balance. The effects of plough pans, surface crusts and decreasing surface detention were also investigated. Significant structural deterioration, as evidenced by substantially reduced hydraulic conductivity, is necessary before significant runoff is generated in the low intensity rainfall regime of the Southern Tablelands (6 min rainfall intensity <45 mm h-1). A 10 mm thick plough pan (at a depth of 100 mm) in the A-horizon of a long-term conventionally tilled soil required a saturated hydraulic conductivity (K,) of less than 2.5 mm h-1 before runoff exceeded 10% of incident rainfall in this rainfall regime. Similarly, a crust K, of less than 2.5 mm h-1 was necessary before runoff exceeded 10% of incident rainfall (provided that surface detention was 2 or more). As the crust K, approached the rainfall rate, small decreases in Ks resulted in large increases in runoff. An increase in surface detention of 1 to 3 mm resulted in a large reduction in runoff where crust K, was less than 2-5 mm h-1. Deterministic simulation models incorporating well established physical laws are effective tools in the study of soil structural effects on the field water regime. Their application, however, is constrained by insufficient knowledge of the fundamental hydraulic properties of Australian soils and how they are changing in response to our land management.

Soil Research ◽  
1990 ◽  
Vol 28 (4) ◽  
pp. 487 ◽  
Author(s):  
MA Rab ◽  
KA Olsson ◽  
ST Willatt

Resistances to water flow were analysed for the soil-root system of a potato crop growing on a duplex soil-where soil hydraulic properties varied with depth-under two irrigation regimes: 'wet' (irrigated weekly) and 'dry' (irrigated twice only during the growing season). The relative magnitudes of the soil and plant resistances controlling root water uptake were evaluated over depth and time using field-measured soil hydraulic properties and root length densities in successive soil layers. Resistance to water flow in the root system is likely to be the dominant resistance in the liquid phase, although soil resistance increased more rapidly than plant resistance with decreasing soil-water matric potential and root length density. Soil resistance reached similar values to plant resistance only when the soil-water matric potential was in the range -900 kPa to -1500 kPa (corresponding soil hydraulic conductivities of 10-7 and 10-8 m day-1 respectively), depending on the root length beneath unit ground area in the soil layer, La. Poor utilization of water from depth of this soil was attributed to resistance in the root system (possibly radial) associated with low La. Practical considerations for improved water management of the potato crop on clay soils are discussed.


2018 ◽  
Author(s):  
José Luis Gabriel ◽  
Miguel Quemada ◽  
Diana Martín-Lammerding ◽  
Marnik Vanclooster

Abstract. Cover cropping in agriculture is expected to enhance many agricultural and ecosystems functions and services. Yet, few studies are available allowing to evaluate the impact of cover cropping on the long term change of soil hydrologic functions. We assessed the long term change of the soil hydraulic properties due to cover cropping by means of a 10-year field experiment. We monitored continuously soil water content in non cover cropped and cover cropped fields by means of capacitance probes. We subsequently determined the hydraulic properties by inverting the soil hydrological model WAVE, using the time series of the 10 year monitoring data in the object function. We observed two main impacts, each having their own time dynamics. First, we observed an initial compaction as a result of the minimum tillage. This initial negative effect was followed by a more positive cover crop effect. The positive cover crop effect consisted in an increase of the soil micro- and macro-porosity, improving the structure. This resulted in a larger soil water retention capacity. This latter improvement was mainly observed below 20 cm, and mostly in the soil layer between 40 and 80 cm depth. This study shows that the expected cover crop competition for water with the main crop can be compensated by an improvement of the water retention in the intermediate layers of the soil profile. This may enhance the hydrologic functions of agricultural soils in arid and semiarid regions which often are constrained by water stress.


Soil Research ◽  
2002 ◽  
Vol 40 (2) ◽  
pp. 221 ◽  
Author(s):  
R. D. Connolly ◽  
M. Bell ◽  
N. Huth ◽  
D. M. Freebairn ◽  
G. Thomas

We test APSIM-SWIM's ability to simulate infiltration and interactions between the soil water balance and grain crop growth using soil hydraulic properties derived from independent, point measurements. APSIMSWIM is a continuous soil-crop model that simulates infiltration, surface crusting, and soil condition in more detail than most other soil-crop models. Runoff, soil water, and crop growth information measured at sites in southern Queensland was used to test the model. Parameter values were derived directly from soil hydraulic properties measured using rainfall simulators, disc permeameters and ponded rings, and pressure plate apparatus. In general, APSIM-SWIM simulated infiltration, runoff, soil water and the water balance, and yield as accurately and reliably as other soil crop models, indicating the model is suitable for evaluating effects of infiltration and soil-water relations on crop growth. Increased model detail did not hinder application, instead improving parameter transferability and utility, but improved methods of characterising crusting, soil hydraulic conductivity, and macroporosity under field conditions would improve ease of application, prediction accuracy, and reliability of the model. Model utility and accuracy would benefit from improved representation of temporal variation in soil condition, including effects of tillage and consolidation on soil condition and bypass flow in cracks. infiltration, crop models, APSIM, water balance, soil structure.


2021 ◽  
Author(s):  
Ifeoma Edeh ◽  
Ondřej Mašek

&lt;p&gt;The physical properties of biochar have been shown to dramatically influence its performance as a soil amendment. Biochar particle size is one of key parameters, as it controls its specific surface area, shape, and pore distribution. Therefore, this study assessed the role of biochar particle size and hydrophobicity in controlling soil water movement and retention. Softwood pellet biochar in five particle size ranges (&gt;2 mm, 2 &amp;#8211; 0.5 mm, 0.5 &amp;#8211; 0.25 mm, 0.25 &amp;#8211; 0.063mm and &lt;0.063 mm) was used for the experiment. These particle sizes were tested on 2 soil types (sandy loam and loamy sand) at four different application rates (1, 2, 4 and 8%).&amp;#160; Our results showed that biochar hydrophobicity increased with decreasing biochar particle size, leading to a reduction in its water retention capacity. The effect of biochar on soil hydraulic properties varied with different rate of application and particle sizes. With increasing rate of application, water retention increased while hydraulic conductivity decreased. Water content at field capacity, permanent wilting point, and the available water content increased with increasing biochar particle size. The soil hydraulic conductivity increased with decreasing particle sizes apart from biochar particles &lt;0.063mm which showed a significant (p&amp;#8804;0.05) decrease compared to the larger particle sizes. The results clearly showed that both biochar intra-porosity and inter-porosity are important factors affecting soil hydraulic properties. Biochar interpores affected mainly hydraulic conductivity, both interpores and intrapores controlled soil water retention properties. Our results suggest that for a more effective increase in soil water retention in sandy loam and loamy sand, the use of hydrophilic biochar with high intra-porosity is recommended.&lt;/p&gt;


SOIL ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 179-191
Author(s):  
Frederic Leuther ◽  
Steffen Schlüter

Abstract. The ploughing of soils in autumn drastically loosens the soil structure and, at the same time, reduces its stability against external stresses. A fragmentation of these artificially produced soil clods during wintertime is often observed in areas with air temperatures fluctuating around the freezing point. From the pore perspective, it is still unclear (i) under which conditions frost action has a measurable effect on soil structure, (ii) what the impact on soil hydraulic properties is, and (iii) how many freeze–thaw cycles (FTCs) are necessary to induce soil structure changes. The aim of this study was to analyse the cumulative effects of multiple FTC on soil structure and soil hydraulic properties for two different textures and two different initial structures. A silt clay with a substantial amount of swelling clay minerals and a silty loam with fewer swell/shrink dynamics were either kept intact in undisturbed soil cores taken from the topsoil from a grassland or repacked with soil clods taken from a ploughed field nearby. FTCs were simulated under controlled conditions and changes in pore structure ≥ 48 µm were regularly recorded using X-ray µCT. After 19 FTCs, the impact on hydraulic properties were measured, and the resolution of structural characteristics were enhanced towards narrow macropores with subsamples scanned at 10 µm. The impact of FTC on soil structure was dependent on the initial structure, soil texture, and the number of FTCs. Frost action induced a consolidation of repacked soil clods, resulting in a systematic reduction in pore sizes and macropore connectivity. In contrast, the macropore systems of the undisturbed soils were only slightly affected. Independent of the initial structure, a fragmentation of soil clods and macro-aggregates larger than 0.8 to 1.2 mm increased the connectivity of pores smaller than 0.5 to 0.8 mm. The fragmentation increased the unsaturated hydraulic conductivity of all treatments by a factor of 3 in by a factor of 3 in a matrix potential range of −100 to −350 hPa, while water retention was only slightly affected for the silt clay soil. Already 2 to 5 FTCs enforced a well-connected pore system of narrow macropores in all treatments, but it was steadily improved by further FTCs. The implications of fewer FTCs during milder winters caused by global warming are twofold. In ploughed soils, the beneficial seedbed consolidation will be less intense. In grassland soils, which have reached a soil structure in dynamic equilibrium that has experienced many FTCs in the making, there is still a beneficial increase in water supply through increasing unsaturated hydraulic conductivity by continued FTCs that might also be less efficient in the future.


2021 ◽  
Author(s):  
Brigitta Szabó ◽  
Melanie Weynants ◽  
Tobias Weber

&lt;p&gt;We present improved European hydraulic pedotransfer functions (PTFs) which now use the machine learning algorithm random forest and include prediction uncertainties. The new PTFs (euptfv2) are an update of the previously published euptfv1 (T&amp;#243;th et al., 2015). With the derived hydraulic PTFs soil hydraulic properties and van Genuchten-Mualem model parameters can be predicted from easily available soil properties. The updated PTFs perform significantly better than euptfv1 and are applicable for 32 predictor variables combinations. The uncertainties reflect uncertainties from the considered input data, predictors and the applied algorithm. The euptfv2 includes transfer functions to compute soil water content at saturation (0 cm matric potential head), field capacity (both -100 and -330 cm matric potential head) and wilting point (-15,000 cm matric potential head), plant available water content computed with field capacity at -100 and -330 cm matric potential head, saturated hydraulic conductivity, and Mualem-van Genuchten parameters of the moisture retention and hydraulic conductivity curves. The influence of predictor variables on predicted soil hydraulic properties is explored and suggestions to best predictor variables given.&lt;/p&gt;&lt;p&gt;The algorithms have been implemented in a web interface (https://ptfinterface.rissac.hu) and an R package (https://doi.org/10.5281/ZENODO.3759442) to facilitate the use of the PTFs, where the PTFs&amp;#8217; selection is automated based on soil properties available for the predictions and required soil hydraulic property.&lt;/p&gt;&lt;p&gt;The new PTFs will be applied to derive soil hydraulic properties for field- and catchment- scale hydrological modelling in European case studies of the OPTAIN project (https://www.optain.eu/). Functional evaluation of the PTFs is performed under the iAqueduct research project.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;This research has been supported by the Hungarian National Research, Development and Innovation Office (grant no. KH124765), the J&amp;#225;nos Bolyai Research Scholarship of the Hungarian Academy of Sciences (grant no. BO/00088/18/4), and the German Research Foundation (grant no. SFB 1253/12017). OPTAIN is funded by the European Union&amp;#8217;s Horizon 2020 Program for research and innovation under Grant Agreement No. 862756.&lt;/p&gt;


2021 ◽  
Author(s):  
Budiman Minasny ◽  
Rudiyanto Rudiyanto ◽  
Federico Maggi

&lt;p&gt;To study the effect of drought on soil water dynamics, we need an accurate description of water retention and hydraulic conductivity from saturation to complete dryness. Recent studies have demonstrated the inaccuracy of conventional soil hydraulic models, especially in the dry end. Likewise, current pedotransfer functions (PTFs) for soil hydraulic properties are based on the classical Mualem-van Genuchten functions.&lt;/p&gt;&lt;p&gt;This study will evaluate models that estimate soil water retention and unsaturated hydraulic conductivity curves in full soil moisture ranges. An example is the Fredlund-Xing scaling model coupled with the hydraulic conductivity model of Wang et al. We will develop pedotransfer functions that can estimate parameters of the model. We will compare it with existing PTFs in predicting water retention and hydraulic conductivity.&lt;/p&gt;&lt;p&gt;The results show that a new suite of PTFs that used sand, silt, clay, and bulk density can be used successfully to predict water retention and hydraulic conductivity over a range of moisture content. The prediction of hydraulic properties is used in a soil water flow model to simulate soil moisture dynamics under drought. This study demonstrates the importance of accurate hydraulic model prediction for a better description of soil moisture dynamics.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2020 ◽  
Author(s):  
Patrizia Hangele ◽  
Katharina Luise Müller ◽  
Hannes Laermanns ◽  
Christina Bogner

&lt;p&gt;The need to study the occurrence and effects of microplastic (MP) in different ecosystems has become apparent by a variety of studies in the past years. Until recently, research regarding MP in the environment has mainly focused on marine systems. Within terrestrial systems, studies suggest soils to be the biggest sink for MP. Some studies now started to explore the presence of MP in soils. However, there is a substantial lack of the basic mechanistic understanding of the behaviour of MP particles within soils.&lt;/p&gt;&lt;p&gt;This study investigates how the presence of MP in soils affects their hydraulic properties. In order to understand these processes, experiments are set up under controlled laboratory conditions as to set unknown influencing variables to a minimum. Different substrates, from simple sands to undisturbed soils, are investigated in soil cylinders. MP particles of different sizes and forms of the most common plastic types are applied to the surface of the soil cylinders and undergo an irrigation for the MP particles to infiltrate. Soil-water retention curves and soil hydraulic conductivity are measured before and after the application of MP particles. It is hypothesised that the infiltrated MP particles clog a part of the pore space and should thus reduce soil hydraulic conductivity and change the soil-water retention curve of the sample. Knowledge about the influence of MP on soil hydraulic properties are crucial to understand transport and retention of MP in soils.&lt;/p&gt;


2017 ◽  
Author(s):  
Jose Luis Gabriel ◽  
Miguel Quemada ◽  
Diana Martín-Lammerding ◽  
Marnik Vanclooster

Abstract. Cover cropping in agriculture is expected to enhance many agricultural and ecosystems functions and services. Yet, few studies are available allowing to evaluate the impact of cover cropping on the long term change of soil hydrologic functions. We assessed the long term change of the soil hydraulic properties due to cover cropping by means of a 10-year field experiment. We monitored continuously soil water content in non cover cropped and cover cropped fields by means of capacitance probes. We subsequently determined the hydraulic properties by inverting the soil hydrological model WAVE, using the time series of the 10 year monitoring data in the object function. We observed two main impacts, each having their own time dynamics. First, we observed an initial compaction as a result of the minimum tillage. This initial negative effect was followed by a more positive cover crop effect. The positive cover crop effect consisted in an increase of the soil micro- and macro-porosity, improving the structure. This resulted in a larger soil water retention capacity. This latter improvement was mainly observed below 20 cm, and mostly in the soil layer between 40 and 80 cm depth. This study shows that the expected cover crop competition for water with the main crop can be compensated by an improvement of the water retention in the intermediate layers of the soil profile. This may enhance the hydrologic functions of agricultural soils in arid and semiarid regions which often are constrained by water stress.


Geoderma ◽  
2018 ◽  
Vol 332 ◽  
pp. 10-19 ◽  
Author(s):  
Steffen Schlüter ◽  
Caroline Großmann ◽  
Julius Diel ◽  
Gi-Mick Wu ◽  
Sabine Tischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document