euptfv2: updated hydraulic pedotransfer functions for Europe

Author(s):  
Brigitta Szabó ◽  
Melanie Weynants ◽  
Tobias Weber

<p>We present improved European hydraulic pedotransfer functions (PTFs) which now use the machine learning algorithm random forest and include prediction uncertainties. The new PTFs (euptfv2) are an update of the previously published euptfv1 (Tóth et al., 2015). With the derived hydraulic PTFs soil hydraulic properties and van Genuchten-Mualem model parameters can be predicted from easily available soil properties. The updated PTFs perform significantly better than euptfv1 and are applicable for 32 predictor variables combinations. The uncertainties reflect uncertainties from the considered input data, predictors and the applied algorithm. The euptfv2 includes transfer functions to compute soil water content at saturation (0 cm matric potential head), field capacity (both -100 and -330 cm matric potential head) and wilting point (-15,000 cm matric potential head), plant available water content computed with field capacity at -100 and -330 cm matric potential head, saturated hydraulic conductivity, and Mualem-van Genuchten parameters of the moisture retention and hydraulic conductivity curves. The influence of predictor variables on predicted soil hydraulic properties is explored and suggestions to best predictor variables given.</p><p>The algorithms have been implemented in a web interface (https://ptfinterface.rissac.hu) and an R package (https://doi.org/10.5281/ZENODO.3759442) to facilitate the use of the PTFs, where the PTFs’ selection is automated based on soil properties available for the predictions and required soil hydraulic property.</p><p>The new PTFs will be applied to derive soil hydraulic properties for field- and catchment- scale hydrological modelling in European case studies of the OPTAIN project (https://www.optain.eu/). Functional evaluation of the PTFs is performed under the iAqueduct research project.</p><p> </p><p>This research has been supported by the Hungarian National Research, Development and Innovation Office (grant no. KH124765), the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (grant no. BO/00088/18/4), and the German Research Foundation (grant no. SFB 1253/12017). OPTAIN is funded by the European Union’s Horizon 2020 Program for research and innovation under Grant Agreement No. 862756.</p>

2021 ◽  
Author(s):  
Michael Bitterlich ◽  
Richard Pauwels

<p>Hydraulic properties of mycorrhizal soils have rarely been reported and difficulties in directly assigning potential effects to hyphae of arbuscular mycorrhizal fungi (AMF) arise from other consequences of AMF being present, i.e. their influence on growth and water consumption rates of their host plants that both also influence soil hydraulic properties.</p><p>We assumed that the typical nylon meshes used for root-exclusion experiments in mycorrhizal research can provide a dynamic hydraulic barrier. It is expected that the uniform pore size of the rigid meshes causes a sudden hydraulic decoupling of the enmeshed inner volume from the surrounding soil as soon as the mesh pores become air-filled. Growing plants below the soil moisture threshold for hydraulic decoupling would minimize plant-size effects on root-exclusion compartments and allow for a more direct assignment of hyphal presence to modulations in soil hydraulic properties.</p><p>We carried out water retention and hydraulic conductivity measurements with two tensiometers introduced in two different heights in a cylindrical compartment (250 cm³) containing a loamy sand, either with or without the introduction of a 20 µm nylon mesh equidistantly between the tensiometers. Introduction of a mesh reduced hydraulic conductivity across the soil volumes by two orders of magnitude from 471 to 6 µm d<sup>-1</sup> at 20% volumetric water content.</p><p>We grew maize plants inoculated or not with Rhizophagus irregularis in the same soil in pots that contained root-exclusion compartments while maintaining 20% volumetric water content. When hyphae were present in the compartments, water potential and unsaturated hydraulic conductivity increased for a given water content compared to compartments free of hyphae. These differences increased with progressive soil drying.</p><p>We conclude that water extractability from soils distant to roots can be facilitated under dry conditions when AMF hyphae are present.</p><p> </p>


2019 ◽  
Vol 23 (6) ◽  
pp. 2615-2635 ◽  
Author(s):  
Brigitta Szabó ◽  
Gábor Szatmári ◽  
Katalin Takács ◽  
Annamária Laborczi ◽  
András Makó ◽  
...  

Abstract. Spatial 3-D information on soil hydraulic properties for areas larger than plot scale is usually derived using indirect methods such as pedotransfer functions (PTFs) due to the lack of measured information on them. PTFs describe the relationship between the desired soil hydraulic parameter and easily available soil properties based on a soil hydraulic reference dataset. Soil hydraulic properties of a catchment or region can be calculated by applying PTFs on available soil maps. Our aim was to analyse the performance of (i) indirect (using PTFs) and (ii) direct (geostatistical) mapping methods to derive 3-D soil hydraulic properties. The study was performed on the Balaton catchment area in Hungary, where density of measured soil hydraulic data fulfils the requirements of geostatistical methods. Maps of saturated water content (0 cm matric potential), field capacity (−330 cm matric potential) and wilting point (−15 000 cm matric potential) for 0–30, 30–60 and 60–90 cm soil depth were prepared. PTFs were derived using the random forest method on the whole Hungarian soil hydraulic dataset, which includes soil chemical, physical, taxonomical and hydraulic properties of some 12 000 samples complemented with information on topography, climate, parent material, vegetation and land use. As a direct and thus geostatistical method, random forest combined with kriging (RFK) was applied to 359 soil profiles located in the Balaton catchment area. There were no significant differences between the direct and indirect methods in six out of nine maps having root-mean-square-error values between 0.052 and 0.074 cm3 cm−3, which is in accordance with the internationally accepted performance of hydraulic PTFs. The PTF-based mapping method performed significantly better than the RFK for the saturated water content at 30–60 and 60–90 cm soil depth; in the case of wilting point the RFK outperformed the PTFs at 60–90 cm depth. Differences between the PTF-based and RFK mapped values are less than 0.025 cm3 cm−3 for 65 %–86  % of the catchment. In RFK, the uncertainty of input environmental covariate layers is less influential on the mapped values, which is preferable. In the PTF-based method the uncertainty of mapping soil hydraulic properties is less computationally intensive. Detailed comparisons of maps derived from the PTF-based method and the RFK are presented in this paper.


2020 ◽  
Vol 34 (3) ◽  
pp. 310-324
Author(s):  
Leonardo Ezequiel Scherger ◽  
Victoria Zanello ◽  
Claudio Lexow

The aim of this work is to compare the use of the inverse solution approach in the estimation of soil hydraulic properties with traditional tension disk infiltrometer (TDI) data analysis, field retention data and commonly used pedotransfer functions (PTFs). Field data were collected in an experimental plot located at Bahía Blanca, Argentina. Field infiltration under saturated conditions was measured by the inverse auger hole method and infiltration under unsaturated conditions were carried out with TDI. Field retention data (θ(h)) were also collected periodically. The HYDRUS 2D/3D software was used to optimize soil hydraulic parameters by inverse solution according to TDI data. The saturated hydraulic conductivity measured by inverse auger hole method (5.53 cm.h-1) and calculated by Wooding analytical approach (5.35 cm.h-1) and inverse numerical simulations (5.36 cm.h-1) showed very close values. According to macroporosity estimates infiltrated water is mainly conducted through soils micro and mesopores.  Macropores only channeled 15.9% of total infiltrated flow.  Soil water retention curves (SWRC) predicted by PTFs did not represented correctly field retention data. The best adjustment between water content at specific pressure heads predicted by SWRCs and field measured water content was reached by the TDI inverse solution approach (RMSE: 0.050 cm3.cm-3). The inverse solution approach probed to be a simple and practical method to obtain an accurate estimate of both, SWRC and hydraulic conductivity curve.


Soil Research ◽  
2013 ◽  
Vol 51 (2) ◽  
pp. 94 ◽  
Author(s):  
Rogerio Cichota ◽  
Iris Vogeler ◽  
Val O. Snow ◽  
Trevor H. Webb

Modelling water and solute transport through soil requires the characterisation of the soil hydraulic functions; however, determining these functions based on measurements is time-consuming and costly. Pedotransfer functions (PTFs), which make use of easily measurable soil properties to predict the hydraulic functions, have been proposed as an alternative to measurements. The better known and more widely used PTFs were developed in the USA or Europe, where large datasets exist. No specific PTFs have been published for New Zealand soils. To address this gap, we evaluated a range of published PTFs against an available dataset comprising a range of different soils from New Zealand and selected the best PTFs to construct an ensemble PTF (ePTF). Assessment (and adjustment when required) of published PTFs was done by comparing measurements and estimates of soil water content and the hydraulic conductivity at selected matric suction values. For each point, the best two or three PTFs were chosen to compose the ePTF, with correcting constants if needed. The outputs of the ePTF are the hydraulic properties at selected matric suctions, akin to obtaining measurements, thus allowing the fit of different equations as well as combining any available measurements. Testing of the ePTF showed promising performance, with reasonably accurate estimates of the water retention of an independent dataset. Root mean square error values averaged 0.06 m3 m–3 for various New Zealand soils, which is within the accuracy level of published PTF studies. The largest errors were found for soils with high clay content, for which the ePTF should be used with care. The performance of the ePTF for estimating soil hydraulic conductivity was not as reliable as for water content, exhibiting large scatter. Predictions of saturated hydraulic conductivity were of the same magnitude as the measurements, whereas the unsaturated values were generally under-predicted. The conductivity data available for this study were limited and highly variable. The estimates for hydraulic conductivity should therefore be used with much care, and future research should address measurements and analysis to improve the predictions. The ePTF was also used to parameterise the SWIM soil module for use in Agricultural Production Systems Simulator (APSIM) simulations. Comparisons of drainage predicted by APSIM against results from lysimeter experiments suggest that the use of the derived ePTF is suited for the estimation of soil parameters for use in modelling. The ePTF is not envisaged as a substitute for measurements but is a useful tool to complement datasets with limited amounts of measured data.


2018 ◽  
Vol 7 (1) ◽  
pp. 12
Author(s):  
Shwetha Prasanna

Soils are a product of the factors of formation and continuously change over the earth’s surface. The analysis of the spatial variability of soil properties is important for land management and construction of an ecological environment. Soils are characterized by high degree of spatial variability due to the combined effect of physical, chemical or biological processes that operate with different intensities and at different scales. The spatial variability of soil hydraulic properties helps us to find the subsurface flux of water. The most frequently used hydraulic properties are soil water retention curve and saturated hydraulic conductivity. Both these hydraulic properties exhibit a high degree of spatial and temporal variability. The primary objective of this study was to analyze the spatial variability of hydraulic properties of forest soils of Pavanje river basin. Correlation analysis technique has been used to analyze various soil properties. Spatial variability of the forested hillslope soils at different depths varied considerably among the soil hydraulic properties. The spatial variability of water retention at all the different pressure head is low at the top layers, and increases towards the bottom layers. The saturated hydraulic conductivity is almost same in the top layers, but more in the bottom layers of forest soil.


2021 ◽  
Author(s):  
Budiman Minasny ◽  
Rudiyanto Rudiyanto ◽  
Federico Maggi

<p>To study the effect of drought on soil water dynamics, we need an accurate description of water retention and hydraulic conductivity from saturation to complete dryness. Recent studies have demonstrated the inaccuracy of conventional soil hydraulic models, especially in the dry end. Likewise, current pedotransfer functions (PTFs) for soil hydraulic properties are based on the classical Mualem-van Genuchten functions.</p><p>This study will evaluate models that estimate soil water retention and unsaturated hydraulic conductivity curves in full soil moisture ranges. An example is the Fredlund-Xing scaling model coupled with the hydraulic conductivity model of Wang et al. We will develop pedotransfer functions that can estimate parameters of the model. We will compare it with existing PTFs in predicting water retention and hydraulic conductivity.</p><p>The results show that a new suite of PTFs that used sand, silt, clay, and bulk density can be used successfully to predict water retention and hydraulic conductivity over a range of moisture content. The prediction of hydraulic properties is used in a soil water flow model to simulate soil moisture dynamics under drought. This study demonstrates the importance of accurate hydraulic model prediction for a better description of soil moisture dynamics.</p><p> </p>


Author(s):  
Brigitta Szabó ◽  
Melanie Weynants ◽  
Tobias KD Weber

Soil hydraulic properties are often derived indirectly, i.e. computed from easily available soil properties with pedotransfer functions (PTFs), when those are needed for catchment, regional or continental scale applications. When predicted soil hydraulic parameters are used for the modelling of the state and flux of water in soils, uncertainty of the computed values can provide more detailed information when drawing conclusions. The aim of this study was to update the previously published European PTFs (Tóth et al., 2015, euptf v1.4.0) by providing prediction uncertainty calculation built into the transfer functions. The new set of algorithms was derived for point predictions of soil water content at saturation (0 cm matric potential head), field capacity (both -100 and -330 cm matric potential head), wilting point (-15.000 cm matric potential head), plant available water, and saturated hydraulic conductivity, as well as the Mualem-van Genuchten model parameters of the moisture retention and hydraulic conductivity curve. The minimum set of input properties for the prediction is soil depth and sand, silt and clay content. The effect of including additional information like soil organic carbon content, bulk density, calcium carbonate content, pH and cation exchange capacity were extensively analysed. The PTFs were derived adopting the random forest method. The advantage of the new PTFs is that they i) provide information about prediction uncertainty, ii) are significantly more accurate than the euptfv1, iii) can be applied for more predictor variable combinations than the euptfv1, 32 instead of 5, and iv) are now also derived for the prediction of water content at -100 cm matric potential head and plant available water content.


Solid Earth ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 929-943 ◽  
Author(s):  
C. Cassinari ◽  
P. Manfredi ◽  
L. Giupponi ◽  
M. Trevisan ◽  
C. Piccini

Abstract. In this paper the results of a study of soil hydraulic properties and plant coverage of a landfill located in Piacenza (Po Valley, Italy) are presented, together with the attempt to relate the hydraulic properties in relation with plant coverage. The measured soil water retention curve was first compared with the output of pedotransfer functions taken from the literature and then compared with the output of the same pedotransfer functions applied to a reference soil. The landfill plant coverage was also studied. The relationship between soil hydraulic properties and plant coverage showed that the landfill soils have a low water content available for plants. The soils' low water content, together with a lack of depth and a compacted structure, justifies the presence of a nitrophilous, disturbed-soil vegetation type, dominated by ephemeral annual species (therophytes).


2021 ◽  
Vol 14 (1) ◽  
pp. 151-175
Author(s):  
Brigitta Szabó ◽  
Melanie Weynants ◽  
Tobias K. D. Weber

Abstract. Soil hydraulic properties are often derived indirectly, i.e. computed from easily available soil properties with pedotransfer functions (PTFs), when those are needed for catchment, regional or continental scale applications. When predicted soil hydraulic parameters are used for the modelling of the state and flux of water in soils, uncertainty of the computed values can provide more detailed information when drawing conclusions. The aim of this study was to update the previously published European PTFs (Tóth et al., 2015, euptf v1.4.0) by providing prediction uncertainty calculation built into the transfer functions. The new set of algorithms was derived for point predictions of soil water content at saturation (0 cm matric potential head), field capacity (both −100 and −330 cm matric potential head), wilting point (−15 000 cm matric potential head), plant available water, and saturated hydraulic conductivity, as well as the Mualem–van Genuchten model parameters of the moisture retention and hydraulic conductivity curve. The minimum set of input properties for the prediction is soil depth and sand, silt and clay content. The effect of including additional information like soil organic carbon content, bulk density, calcium carbonate content, pH and cation exchange capacity were extensively analysed. The PTFs were derived adopting the random forest method. The advantage of the new PTFs is that they (i) provide information about prediction uncertainty, (ii) are significantly more accurate than the euptfv1, (iii) can be applied for more predictor variable combinations than the euptfv1, 32 instead of 5, and (iv) are now also derived for the prediction of water content at −100 cm matric potential head and plant available water content. A practical guidance on how to use the derived PTFs is provided.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1401
Author(s):  
Hadis Mohajerani ◽  
Sonja Teschemacher ◽  
Markus C. Casper

Soil hydraulic properties, which are basically saturated and unsaturated hydraulic conductivity and water retention characteristics, remarkably control the main hydrological processes in catchments. Thus, adequate parameterization of soils is one of the most important tasks in physically based catchment modeling. To estimate these properties, the choice of the PTFs in a hydrological model is often made without taking the runoff characteristics of the catchment into consideration. Therefore, this study introduces a methodology to analyze the sensitivity of a catchment water balance model to the choice of the PTF. To do so, we define 11 scenarios including different combinations of PTFs to estimate the van Genuchten parameters and saturated hydraulic conductivity. We use a calibrated/validated hydrological model (WaSiM-ETH) as a baseline scenario. By altering the underlying PTFs, the effects on the hydraulic properties are quantified. Moreover, we analyze the resulting changes in the spatial/temporal variation of the total runoff and in particular, the runoff components at the catchment outlet. Results reveal that the water distribution in the hydrologic system varies considerably amongst different PTFs, and the water balance components are highly sensitive to the spatial structure of soil hydraulic properties. It is recommended that models be tested by careful consideration of PTFs and orienting the soil parameterization more towards representing a plausible hydrological behavior rather than focusing on matching the calibration data.


Sign in / Sign up

Export Citation Format

Share Document