Proximity to grasslands influences fire frequency and sensitivity to climate variability in ponderosa pine forests of the Colorado Front Range

2012 ◽  
Vol 21 (5) ◽  
pp. 562 ◽  
Author(s):  
Meredith H. Gartner ◽  
Thomas T. Veblen ◽  
Rosemary L. Sherriff ◽  
Tania L. Schoennagel

This study examines the influence of grasslands on fire frequency and occurrence in the ponderosa pine (Pinus ponderosa)-dominated forests of the central and northern Colorado Front Range. Fire frequency based on tree-ring fire-scar data was compared between 34 fire history sites adjacent to grasslands and 34 fire history sites not adjacent to grasslands for the time period 1675–1920. Relationships were examined between fire occurrence and values of the Palmer Drought Severity Index and sea-surface temperatures from the NINO3 region of the tropical Pacific Ocean (positive values indicating El Niño-like conditions and negative values La Niña-like conditions). Ponderosa pine stands adjacent to grasslands experienced more frequent fire than stands not adjacent to grasslands (P < 0.05) owing to proximity to prevalent fine fuels able to support relatively frequent surface fires. Fire activity adjacent to grasslands showed a lagged positive relationship with moist years (positive Palmer Drought Severity Index and positive NINO3) antecedent to fire events whereas fire occurrence at sites not adjacent to grasslands showed no relationship to antecedent moist years. This study illustrates how the presence of grasslands in a ponderosa pine landscape results in increased fire frequency (a bottom–up influence) and also increases the sensitivity of fire activity to interannual climate variability (a top–down influence).


2007 ◽  
Vol 16 (1) ◽  
pp. 23 ◽  
Author(s):  
John K. Maingi ◽  
Mary C. Henry

Most wildfires in Kentucky occur in the heavily forested Appalachian counties in the eastern portion of the state. In the present study, we reconstructed a brief fire history of eastern Kentucky using Landsat Thematic Mapper and Enhanced Thematic Mapper Plus images acquired between 1985 and 2002. We then examined relationships between fire occurrence and area burned, and abiotic and human factors. Abiotic factors included Palmer Drought Severity Index, slope, aspect, and elevation, and human factors included county unemployment rates, distance to roads, and distance to populated places. Approximately 83% of the total burned area burned only once, 14% twice, and 3% thrice. More fires burned in the winter compared with the fall, but the latter fires were larger on average and accounted for ~71% of the total area burned. Fire size was negatively correlated with Palmer Drought Severity Index for certain times of the year. There were significant relationships between elevation and slope and fire occurrence, but not between aspect and fire occurrence. We found links between fire location and proximity to roads and settlements, but we found no correlations between monthly unemployment rates and arson-caused fires.



2021 ◽  
Author(s):  
Sinta Berliana S. ◽  
Indah Susanti ◽  
Bambang Siswanto ◽  
Amalia Nurlatifah ◽  
Hidayatul Latifah ◽  
...  


2010 ◽  
Vol 19 (1) ◽  
pp. 14 ◽  
Author(s):  
Katarzyna Grala ◽  
William H. Cooke

Forests constitute a large percentage of the total land area in Mississippi and are a vital element of the state economy. Although wildfire occurrences have been considerably reduced since the 1920s, there are still ~4000 wildfires each year in Mississippi burning over 24 000 ha (60 000 acres). This study focusses on recent history and various characteristics of Mississippi wildfires to provide better understanding of spatial and temporal characteristics of wildfires in the state. Geographic information systems and Mississippi Forestry Commission wildfire occurrence data were used to examine relationships between climatic and anthropogenic factors, the incidence, burned area, wildfire cause, and socioeconomic factors. The analysis indicated that wildfires are more frequent in southern Mississippi, in counties covered mostly by pine forest, and are most prominent in the winter–spring season. Proximity to roads and cities were two anthropogenic factors that had the most statistically significant correlation with wildfire occurrence and size. In addition, the validity of the Palmer Drought Severity Index as a measure of fire activity was tested for climatic districts in Mississippi. Analysis indicated that drought influences fire numbers and size during summer and fall (autumn). The strongest relationship between the Palmer Drought Severity Index and burned area was found for the southern climatic districts for the summer–fall season.



2021 ◽  
Vol 12 (1) ◽  
pp. 16-29
Author(s):  
Ika Purnamasari ◽  
◽  
Tri Wahyu Saputra ◽  
Suci Ristiyana ◽  
◽  
...  


2015 ◽  
Vol 29 (13) ◽  
pp. 4833-4847 ◽  
Author(s):  
Yi Liu ◽  
Xiaoli Yang ◽  
Liliang Ren ◽  
Fei Yuan ◽  
Shanhu Jiang ◽  
...  


2000 ◽  
Vol 78 (7) ◽  
pp. 851-861 ◽  
Author(s):  
Marc D Abrams ◽  
Saskia van de Gevel ◽  
Ryan C Dodson ◽  
Carolyn A Copenheaver

Dendrochronological techniques were used to investigate the dynamics of an old-growth forest on the extreme slope (65%) at Ice Glen Natural Area in southwestern Massachusetts. The site represented a rare opportunity to study the disturbance history, successional development, and responses to climatic variation of an old-growth hemlock (Tsuga canadensis (L.) Carr) - white pine (Pinus strobus L.) - northern hardwood forest in the northeastern United States. Hemlock is the oldest species in the forest, with maximum tree ages of 305-321 years. The maximum ages for white pine and several hardwood species are 170-200 years. There was continuous recruitment of hemlock trees from 1677 to 1948. All of the existing white pine was recruited in the period between 1800 and 1880, forming an unevenly aged population within an unevenly aged, old-growth hemlock canopy. This was associated with large increases in the Master tree-ring chronologies, indicative of major stand-wide disturbances, for both hemlock and white pine. Nearly all of the hardwood species were also recruited between 1800 and 1880. After 1900, there was a dramatic decline in recruitment for all species, including hemlock, probably as a result of intensive deer browsing. White pine and hemlock tree-ring growth during the 20th century was positively correlated with the annual Palmer drought severity index (r = 0.61 and 0.39, respectively). This included reduced growth during periods of low Palmer drought severity index values, the drought years of 1895-1922, and dramatic increases during periods of high Palmer drought severity index values in the 1970s and 1990s. Significant positive and negative correlations of certain monthly Palmer drought severity index values with 20th century tree-ring chronologies also exist for white pine and hemlock using response function analysis. The results of this study suggest that old-growth forests on extreme sites in the eastern United States may be particularly sensitive to direct and indirect allogenic factors and climatic variations and represent an important resource for studying long-term ecological and climatic history.Key words: age structure, radial growth analysis, disturbance, climate, fire, tree rings.



2018 ◽  
Vol 559 ◽  
pp. 461-470 ◽  
Author(s):  
Ufuk Beyaztas ◽  
Bugrayhan Bickici Arikan ◽  
Beste Hamiye Beyaztas ◽  
Ercan Kahya


2020 ◽  
Vol 16 (2) ◽  
pp. 783-798
Author(s):  
Sarir Ahmad ◽  
Liangjun Zhu ◽  
Sumaira Yasmeen ◽  
Yuandong Zhang ◽  
Zongshan Li ◽  
...  

Abstract. The rate of global warming has led to persistent drought. It is considered to be the preliminary factor affecting socioeconomic development under the background of the dynamic forecasting of the water supply and forest ecosystems in West Asia. However, long-term climate records in the semiarid Hindu Kush range are seriously lacking. Therefore, we developed a new tree-ring width chronology of Cedrus deodara spanning the period of 1537–2017. We reconstructed the March–August Palmer Drought Severity Index (PDSI) for the past 424 years, going back to 1593 CE. Our reconstruction featured nine dry periods (1593–1598, 1602–1608, 1631–1645, 1647–1660, 1756–1765, 1785–1800, 1870–1878, 1917–1923, and 1981–1995) and eight wet periods (1663–1675, 1687–1708, 1771–1773, 1806–1814, 1844–1852, 1932–1935, 1965–1969, and 1990–1999). This reconstruction is consistent with other dendroclimatic reconstructions in West Asia, thereby confirming its reliability. The multi-taper method and wavelet analysis revealed drought variability at periodicities of 2.1–2.4, 3.3, 6.0, 16.8, and 34.0–38.0 years. The drought patterns could be linked to the large-scale atmospheric–oceanic variability, such as the El Niño–Southern Oscillation, Atlantic Multidecadal Oscillation, and solar activity. In terms of current climate conditions, our findings have important implications for developing drought-resistant policies in communities on the fringes of the Hindu Kush mountain range in northern Pakistan.



Sign in / Sign up

Export Citation Format

Share Document