The dendroecology and climatic impacts for old-growth white pine and hemlock on the extreme slopes of the Berkshire Hills, Massachusetts, U.S.A.

2000 ◽  
Vol 78 (7) ◽  
pp. 851-861 ◽  
Author(s):  
Marc D Abrams ◽  
Saskia van de Gevel ◽  
Ryan C Dodson ◽  
Carolyn A Copenheaver

Dendrochronological techniques were used to investigate the dynamics of an old-growth forest on the extreme slope (65%) at Ice Glen Natural Area in southwestern Massachusetts. The site represented a rare opportunity to study the disturbance history, successional development, and responses to climatic variation of an old-growth hemlock (Tsuga canadensis (L.) Carr) - white pine (Pinus strobus L.) - northern hardwood forest in the northeastern United States. Hemlock is the oldest species in the forest, with maximum tree ages of 305-321 years. The maximum ages for white pine and several hardwood species are 170-200 years. There was continuous recruitment of hemlock trees from 1677 to 1948. All of the existing white pine was recruited in the period between 1800 and 1880, forming an unevenly aged population within an unevenly aged, old-growth hemlock canopy. This was associated with large increases in the Master tree-ring chronologies, indicative of major stand-wide disturbances, for both hemlock and white pine. Nearly all of the hardwood species were also recruited between 1800 and 1880. After 1900, there was a dramatic decline in recruitment for all species, including hemlock, probably as a result of intensive deer browsing. White pine and hemlock tree-ring growth during the 20th century was positively correlated with the annual Palmer drought severity index (r = 0.61 and 0.39, respectively). This included reduced growth during periods of low Palmer drought severity index values, the drought years of 1895-1922, and dramatic increases during periods of high Palmer drought severity index values in the 1970s and 1990s. Significant positive and negative correlations of certain monthly Palmer drought severity index values with 20th century tree-ring chronologies also exist for white pine and hemlock using response function analysis. The results of this study suggest that old-growth forests on extreme sites in the eastern United States may be particularly sensitive to direct and indirect allogenic factors and climatic variations and represent an important resource for studying long-term ecological and climatic history.Key words: age structure, radial growth analysis, disturbance, climate, fire, tree rings.

2020 ◽  
Vol 16 (2) ◽  
pp. 783-798
Author(s):  
Sarir Ahmad ◽  
Liangjun Zhu ◽  
Sumaira Yasmeen ◽  
Yuandong Zhang ◽  
Zongshan Li ◽  
...  

Abstract. The rate of global warming has led to persistent drought. It is considered to be the preliminary factor affecting socioeconomic development under the background of the dynamic forecasting of the water supply and forest ecosystems in West Asia. However, long-term climate records in the semiarid Hindu Kush range are seriously lacking. Therefore, we developed a new tree-ring width chronology of Cedrus deodara spanning the period of 1537–2017. We reconstructed the March–August Palmer Drought Severity Index (PDSI) for the past 424 years, going back to 1593 CE. Our reconstruction featured nine dry periods (1593–1598, 1602–1608, 1631–1645, 1647–1660, 1756–1765, 1785–1800, 1870–1878, 1917–1923, and 1981–1995) and eight wet periods (1663–1675, 1687–1708, 1771–1773, 1806–1814, 1844–1852, 1932–1935, 1965–1969, and 1990–1999). This reconstruction is consistent with other dendroclimatic reconstructions in West Asia, thereby confirming its reliability. The multi-taper method and wavelet analysis revealed drought variability at periodicities of 2.1–2.4, 3.3, 6.0, 16.8, and 34.0–38.0 years. The drought patterns could be linked to the large-scale atmospheric–oceanic variability, such as the El Niño–Southern Oscillation, Atlantic Multidecadal Oscillation, and solar activity. In terms of current climate conditions, our findings have important implications for developing drought-resistant policies in communities on the fringes of the Hindu Kush mountain range in northern Pakistan.


2020 ◽  
Vol 30 (1) ◽  
pp. 12-20
Author(s):  
S. Bhandari ◽  
J. H. Speer

 We have used six tree-ring width chronologies of Pinus wallichiana from the Himalayan region, which are available in the International Tree-Ring Data Bank (ITRDB), to determine their growth trends through time and the growth-climate relationship. Each of the chronologies downloaded from the ITRDB was detrended using an Age-dependent Cubic Smoothing Spline with a 20-year starting spline stiffness in the RCSigfree Software Program. We broke the six chronologies into three regions based on natural breaks between the sample sites. Altogether, three composite chronologies were made, one each from Bhutan, Nepal, and Pakistan. The average value for common periods was taken from each of those two chronologies to make a composite chronology. Across the three regions, the growth was lowest in the 1810s and has increased since 1980s. The growth showed a significant positive response to the winter temperature (November-February) in the eastern Himalayas in Bhutan. The chronology from Nepal showed that the growth of this species had a significant positive response to the self-calibrated Palmer Drought Severity Index of the previous year’s December and the current year’s January and March. In the western Himalayas of Pakistan, the growth of the same species is positively correlated to the annual self-calibrated Palmer Drought Severity Index. Winter temperature limits the growth of this species in the eastern Himalayas where there is enough moisture whereas the growth of this species is primarily limited by moisture in the western Himalayas


2008 ◽  
Vol 21 (23) ◽  
pp. 6175-6190 ◽  
Author(s):  
Richard Seager ◽  
Robert Burgman ◽  
Yochanan Kushnir ◽  
Amy Clement ◽  
Ed Cook ◽  
...  

Abstract The possible role that tropical Pacific SSTs played in driving the megadroughts over North America during the medieval period is addressed. Fossil coral records from the Palmyra Atoll are used to derive tropical Pacific SSTs for the period from a.d. 1320 to a.d. 1462 and show overall colder conditions as well as extended multidecadal La Niña–like states. The reconstructed SSTs are used to force a 16-member ensemble of atmosphere GCM simulations, each with different initial conditions, with the atmosphere coupled to a mixed layer ocean outside of the tropical Pacific. Model results are verified against North American tree ring reconstructions of the Palmer Drought Severity Index. A singular value decomposition analysis is performed using the soil moisture anomaly simulated by another 16-member ensemble of simulations forced by global observed SSTs for 1856–2004 and tree ring reconstructions of the Palmer Drought Severity Index for the same period. This relationship is used to transfer the modeled medieval soil moisture anomaly (relative to the modern simulation) into a model-estimated Palmer Drought Severity Index. The model-estimated Palmer Drought Severity Index reproduces many aspects of both the interannual and decadal variations of the tree ring reconstructions, in addition to an overall drier climate that is drier than the tree ring records suggest. The model-estimated Palmer Drought Severity Index simulates two previously identified “megadroughts,” a.d. 1360–1400 and a.d. 1430–60, with a realistic spatial pattern and amplitude. In contrast, the model fails to produce a period of more normal conditions in the early fifteenth century that separated these two megadroughts. The dynamical link between tropical SSTs and the North American megadroughts is akin to that operating in modern droughts. The model results are used to argue that the tropical Pacific played an active role in driving the megadroughts. However, the match between simulated and reconstructed hydroclimate is such that it is likely that both the coral-reconstructed SST anomalies contain significant errors and that SST anomalies in other basins also played a role in driving hydroclimate variations over North America during the late medieval period.


2021 ◽  
Author(s):  
Sinta Berliana S. ◽  
Indah Susanti ◽  
Bambang Siswanto ◽  
Amalia Nurlatifah ◽  
Hidayatul Latifah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document