Rabbit haemorrhagic disease: Macquarie Island rabbit eradication adds to knowledge on both pest control and epidemiology

2017 ◽  
Vol 44 (2) ◽  
pp. 93 ◽  
Author(s):  
Brian Cooke ◽  
Keith Springer ◽  
Lorenzo Capucci ◽  
Greg Mutze

Rabbit haemorrhagic disease virus (RHDV), introduced into in Australia and New Zealand as a biological-control agent for wild rabbits, is least efficacious in cool humid areas where a non-pathogenic calicivirus (RCV-A1) also circulates. Heavy rabbit mortality following release of RHDV on cold sub-Antarctic Macquarie Island, where RCV-A1 was apparently absent, not only complemented the planned rabbit eradication operations, especially by reducing secondary poisoning of sea-birds from aerial baiting, but also ruled out cool or humid climate as a major limiting factor of disease spread. In turn, this has advanced the idea that RCV-A1 antibodies inhibit RHDV spread as well as reducing disease severity and mortality.


2002 ◽  
Vol 29 (6) ◽  
pp. 673 ◽  
Author(s):  
B. D. Cooke ◽  
S. McPhee ◽  
A. J. Robinson ◽  
L. Capucci

Serological data from wild rabbits support the hypothesis that a second RHDV-like virus was already present in Australia before rabbit haemorrhagic disease virus (RHDV) was introduced as a biological control agent. This putative virus apparently persists in most wild rabbit populations in the presence of RHDV, and antibodies raised against it appear to protect some rabbits from fatal rabbit haemorrhagic disease (RHD). High titres of these antibodies are most commonly found in rabbits from high rainfall areas; this may explain why the initial mortality from RHD declined as the disease spread from dry areas into wetter regions and why it remains less effective as a biological control in wetter regions today. The implications for further advances in rabbit control are discussed, including the need to isolate this putative RHDV-like virus and develop specific ELISA tests to facilitate its detection in the field.



2004 ◽  
Vol 31 (6) ◽  
pp. 651
Author(s):  
G. Story ◽  
J. Scanlan ◽  
R. Palmer ◽  
D. Berman

Rabbit haemorrhagic disease virus (RHDV) escaped from quarantine facilities on Wardang Island in September 1995 and spread through South Australia to Queensland by December 1995. To determine the impact of this biological control agent on wild rabbit populations in Queensland, shot sample and spotlight count data were collected at six sites. RHDV spread across Queensland from the south-west to the east at a rate of at least 91 km month–1 between October 1995 and October 1996. The initial impact on rabbit density appeared highly variable, with an increase of 81% (255 ± 79 (s.e.) to 385 ± 73 rabbits km–2) at one site and a decrease of 83% (129 ± 27 to 22 ± 18 rabbits km–2) at another during the first outbreak. However, after 30 months of RHDV activity, counts were at least 90% below counts conducted before RHDV arrived. Using a population model to account for environmental conditions, the mean suppression of rabbit density caused by rabbit haemorrhagic disease (RHD) was estimated to be 74% (ranging from 43% to 94% between sites). No outbreaks were observed when the density of susceptible rabbits was lower than 12 km–2. Where rabbit density remains low for long periods RHDV may not persist. This is perhaps most likely to occur in the isolated populations towards the northern edge of the range of rabbits in Australia. RHDV may have to be reintroduced into these populations. Further south in areas more suitable for rabbits, RHDV is more likely to persist, resulting in a high density of immune rabbits. In such areas conventional control techniques may be more important to enhance the influence of RHD.



2014 ◽  
Vol 41 (2) ◽  
pp. 95 ◽  
Author(s):  
Jerry Olsen ◽  
Brian Cooke ◽  
Susan Trost ◽  
David Judge

Context Some ecologists argue that nesting success and abundance of wedge-tailed eagles (Aquila audax) are strongly linked to the abundance of introduced wild rabbits (Oryctolagus cuniculus). Consequently, concerns were expressed about eagle population viability when the biological control agent rabbit haemorrhagic disease virus (RHDV) heavily reduced rabbit numbers. However, observations following the spread of rabbit haemorrhagic disease (RHD) in Australia and Spain (where Aquila adalberti is an equivalent of A. audax) question this assertion. Eagle numbers did not fall even though rabbits declined regionally by up to 90% in both countries. Aims To reconsider the assumption of a strong link between rabbit abundance and wedge-tailed eagle breeding and population maintenance. Dispelling misconceptions, if any, about the eagles’ dependence on rabbits would benefit the future management of both eagles and rabbits. Methods We reviewed the literature associated with claims that eagles were heavily dependent on rabbits and asked whether these views could be substantiated given the lack of changes in eagle abundance following the spread of RHD. Data on eagle egg-clutch size and nesting success were also reviewed. Conclusions There is little evidence that eagles depend heavily on rabbits as prey. Instead, as rabbits decline, more kangaroos, reptiles and birds are eaten, partly because more native prey becomes available. Eagles have a high proportion of rabbits in their diets mainly where degradation of natural ecosystems, including that caused by rabbits, results in native prey being rare or unavailable. There has been minimal variation in average clutch size following major perturbations in rabbit population size. Implications Rather than perpetuating the idea that high populations of rabbits are needed for wedge-tailed eagle conservation, resources would be better re-directed into understanding continental-scale eagle population dynamics. This would provide a more rational framework to assist decisions on future biological control agents for rabbits.



2004 ◽  
Vol 31 (2) ◽  
pp. 183 ◽  
Author(s):  
G. Story ◽  
D. Berman ◽  
R. Palmer ◽  
J. Scanlan

Rabbit haemorrhagic disease virus (RHDV) escaped from quarantine facilities on Wardang Island in September 1995 and spread through South Australia to Queensland by December 1995. To determine the impact of this biological control agent on wild rabbit populations in Queensland, shot sample and spotlight count data were collected at six sites. RHDV spread across Queensland from the south-west to the east at a rate of at least 91 km month–1 between October 1995 and October 1996. The initial impact on rabbit density appeared highly variable, with an increase of 81% (255 ± 79 (s.e.) to 385 ± 73 rabbits km–2) at one site and a decrease of 83% (129 ± 27 to 22 ± 18 rabbits km–2) at another during the first outbreak. However, after 30 months of RHDV activity, counts were at least 90% below counts conducted before RHDV arrived. Using a population model to account for environmental conditions, the mean suppression of rabbit density caused by rabbit haemorrhagic disease (RHD) was estimated to be 74% (ranging from 43% to 94% between sites). No outbreaks were observed when the density of susceptible rabbits was lower than 12 km–2. Where rabbit density remains low for long periods RHDV may not persist. This is perhaps most likely to occur in the isolated populations towards the northern edge of the range of rabbits in Australia. RHDV may have to be reintroduced into these populations. Further south in areas more suitable for rabbits, RHDV is more likely to persist, resulting in a high density of immune rabbits. In such areas conventional control techniques may be more important to enhance the influence of RHD.



2014 ◽  
Vol 41 (2) ◽  
pp. 136 ◽  
Author(s):  
Carlos Rouco ◽  
Grant Norbury ◽  
Dave Ramsay

Context European rabbits (Oryctolagus cuniculus) are serious economic and environmental pests in Australia and New Zealand. Since the illegal introduction of rabbit haemorrhagic disease virus (RHDV) in New Zealand in 1997, the disease has persisted in most rabbit populations, with major epizootics occurring usually each autumn. Aims We evaluated the efficacy of the virus as a biological control agent in the southern South Island. Methods We used an index of rabbit abundance (kills per hunter) based on a region-wide annual rabbit-hunting competition to evaluate rabbit population trends 7 years before and 16 years after the first outbreak of RHD. We also evaluated the influence of rainfall and temperature in the preceding year on post-RHD trends in the index. Key results Kill rates declined by 60% following the initial epizootic. They remained low for the following 3 years and then increased steadily to intermediate levels punctuated by occasional declines. The instantaneous rate of increase in kill rates during the increase phase was low, but above zero (0.04 per year). No relationship between kill rates and rainfall was apparent, but there was a negative relationship between kill rates and winter temperature in the preceding season. Conclusions The kill-rate data obtained from this hunting competition suggest that RHD still appears to be killing rabbits. Every 2–3 years over the past decade, kill rates have been as low as they were when government rabbit-control programs were in place before RHD arrived, but the efficacy of RHD as a biological control agent is waning compared with the first outbreaks of the disease. This concurs with findings based on spotlight counts. Implications The data collected from this hunting competition are a good example of how ‘citizen science’ can be used to capture large volumes of pest-monitoring data from a wide geographic region for very little cost. The information is a valuable addition to understanding the effects of a major wildlife disease.



2002 ◽  
Vol 29 (6) ◽  
pp. 523 ◽  
Author(s):  
Robert P. Henzell ◽  
Ross B. Cunningham ◽  
Helen M. Neave

Rabbit haemorrhagic disease virus (RHDV) is foreign to Australia, and first entered populations of Australian wild rabbits (Oryctolagus cuniculus L.) in Australia in late 1995. Rabbits are serious environmental and agricultural pests in Australia, and RHDV, a major new pathogen, was introduced as a biological control agent to reduce their numbers. Our study evaluated some of the factors affecting survival of wild rabbits exposed to rabbit haemorrhagic disease (RHD) at 78 sites across Australia.Our data on rabbit numbers consist of the number of rabbits per spotlight kilometre present shortly before and shortly after an RHD outbreak at each site. They are a direct measure of survival rather than mortality. By reducing the interval between the pre- and post-RHD counts to the minimum possible, we sought to minimise the influence on the analysis of other causes of change in rabbit numbers. We calculated proportional survival as the ratio (number of rabbits present after RHD)/(number present before RHD), and used regression analysis to relate it to environmental and other variables. Proportional survival was lower at higher densities of rabbits; was lower if RHDV arrived naturally at the site rather than if it was deliberately released; was lower in areas with hot, dry climates than in areas with cold, wet climates; was lower in southern, inland areas than in warm, coastal areas; and, if the outbreak occurred during summer, was lower in areas of winter rainfall than in areas of summer rainfall. Rainfall seasonality was not correlated with survival at other times of the year. Only in the last effect was there a significant interaction with the time of the year that the outbreak occurred.Our statistical model describes correlations among the data, but does not in itself establish cause and effect. We interpret the properties of our statistical model to draw the following conclusions. First, the effectiveness of RHD is reduced in cold, wet areas and warm, coastal areas, because of the prevalence in these areas of one or more pre-existing caliciviruses in rabbits that impart year-round resistance to RHD. Second, we conclude that the poor summertime performance of RHD in areas that are wet in summer could result from poor survival of RHDV exposed to the combination of high temperature and high relative humidity, although it is also possible that during summer the effectiveness of vectors declines.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tarnya E. Cox ◽  
David S. L. Ramsey ◽  
Emma Sawyers ◽  
Susan Campbell ◽  
John Matthews ◽  
...  

Abstract The increasing popularity of citizen science in ecological research has created opportunities for data collection from large teams of observers that are widely dispersed. We established a citizen science program to complement the release of a new variant of the rabbit biological control agent, rabbit haemorrhagic disease virus (RHDV), known colloquially as K5, across Australia. We evaluated the impact of K5 on the national rabbit population and compared citizen science and professionally-collected spotlight count data. Of the citizen science sites (n = 219), 93% indicated a decrease in rabbit abundance following the release of K5. The overall finite monthly growth rate in rabbit abundance was estimated as 0.66 (95%CI, 0.26, 1.03), averaging a monthly reduction of 34% at the citizen science sites one month after the release. No such declines were observed at the professionally monitored sites (n = 22). The citizen science data submissions may have been unconsciously biased or the number of professional sites may have been insufficient to detect a change. Citizen science participation also declined by 56% over the post-release period. Future programs should ensure the use of blinded trials to check for unconscious bias and consider how incentives and/or the good will of the participants can be maintained throughout the program.



2004 ◽  
Vol 31 (4) ◽  
pp. 415 ◽  
Author(s):  
B. D. Cooke ◽  
J.-L. Chapuis ◽  
V. Magnet ◽  
A. Lucas ◽  
J. Kovaliski

Rabbits have caused enormous damage to the vegetation on seven islands in the sub-Antarctic Kerguelen archipelago, including the main island, Grande Terre. Rabbit sera collected during 2001–02 were tested for antibodies against myxoma virus and rabbit haemorrhagic disease virus with a view to considering the wider use of these viruses to control rabbits. The results confirmed work done 15–20 years earlier that suggested that myxoma virus has not spread across all parts of Grande Terre and occurs at low prevalence among rabbits. By contrast, on Ile du Cimetière, where European rabbit fleas were introduced in 1987–88, the prevalence of myxoma antibodies is high and the rabbit population is relatively low, supporting the idea that the fleas are effective vectors of myxoma virus. Consequently, there should be benefits in releasing fleas on Grand Terre to enhance disease transmission. Reactivity of some rabbit sera in RHD-specific ELISAs suggested that a virus similar to RHDV may be present at low prevalence on Grande Terre but most rabbits are likely to be susceptible and this virus could be considered for use as a future biological control agent.



2002 ◽  
Vol 29 (6) ◽  
pp. 605 ◽  
Author(s):  
Glen Saunders ◽  
Barry Kay ◽  
Greg Mutze ◽  
David Choquenot

Rabbit haemorrhagic disease (RHD) may be the most important rabbit control agent to be made available to graziers in Australia since the advent of myxomatosis. Documenting the benefits of RHD to agricultural production values is an important process in determining best-practice strategies for the use of the disease in controlling rabbit populations. In this paper we review previous studies on the impact of rabbits and present recent Australian case studies that tracked the effects of RHD on agricultural production as the disease first spread across the continent. Indirect consequences of RHD, such as changes in costs of rabbit control as monitored through the use of 1080 (sodium monofluoroacetate), are reported. Potential negative impacts such as adverse effects on the wild rabbit fur and meat trade and in the spread of woody weeds are also discussed.



2004 ◽  
Vol 31 (6) ◽  
pp. 605 ◽  
Author(s):  
John S. Bruce ◽  
Laurie E. Twigg

Although several different cELISAs have been used to assess the exposure of European rabbits to rabbit haemorrhagic disease (RHD), the interpretation of the results of such assays is not always straight-forward. Here we report on such difficulties, and on the likely presence of a non-virulent rabbit haemorrhagic disease virus–like virus (nvRHDV-LV) in south-western Australia. Analysis of sera collected from European rabbits at Kojaneerup (near Albany) in Western Australia provided the first serological evidence of the likely presence of a nvRHDV-LV in wild rabbit populations outside the east coast of Australia and New Zealand, before the deliberate introduction of RHDV as biological control agent in both countries. Six out of 30 rabbits (20%) sampled 1–2 months before the known arrival of RHDV at Kojaneerup were seropositive to RHD on the basis of their IgG isoELISAs. However, none of these positive samples were positive for the RHDV antibody cELISA (1 : 10), indicating likely exposure to nvRHDV-LV. Subsequent serological analysis of 986 rabbits sampled between September 1996 and August 1999 at Kojaneerup indicated that nvRHDV-LV persisted in these rabbits following the natural arrival of RHDV in September 1996. At least 10–34% of rabbits appeared to have been exposed to nvRHDV-LV during the 3-year study. The presence of nvRHDV-LV seemed to offer only limited protection to rabbits from RHDV during the initial epizootic; however, persistence of nvRHDV-LV may have mitigated further RHDV activity after this epizootic. Fewer than 1% of rabbits (9 of 986) showed evidence of RHDV-challenge during the 30 months following the initial RHDV epizootic. Furthermore, except for the epizootic in September 1996, no clinical signs of the disease were apparent in the population until RHDV was deliberately reintroduced in April 1999. Mortality of rabbits exposed to RHDV at this time appeared to be correlated with their IgG isoELISA titre.



Sign in / Sign up

Export Citation Format

Share Document