Ecology and conservation of the northern hopping-mouse (Notomys aquilo)

2016 ◽  
Vol 64 (1) ◽  
pp. 21 ◽  
Author(s):  
Rebecca L. Diete ◽  
Paul D. Meek ◽  
Christopher R. Dickman ◽  
Luke K.-P. Leung

The northern hopping-mouse (Notomys aquilo) is a cryptic and enigmatic rodent endemic to Australia’s monsoonal tropics. Focusing on the insular population on Groote Eylandt, Northern Territory, we present the first study to successfully use live traps, camera traps and radio-tracking to document the ecology of N. aquilo. Searches for signs of the species, camera trapping, pitfall trapping and spotlighting were conducted across the island during 2012–15. These methods detected the species in three of the 32 locations surveyed. Pitfall traps captured 39 individuals over 7917 trap-nights. Females were significantly longer and heavier, and had better body condition, than males. Breeding occurred throughout the year; however, the greatest influx of juveniles into the population occurred early in the dry season in June and July. Nine individuals radio-tracked in woodland habitat utilised discrete home ranges of 0.39–23.95 ha. All individuals used open microhabitat proportionally more than was available, and there was a strong preference for eucalypt woodland on sandy substrate rather than for adjacent sandstone woodland or acacia shrubland. Camera trapping was more effective than live trapping at estimating abundance and, with the lower effort required to employ this technique, it is recommended for future sampling of the species. Groote Eylandt possibly contains the last populations of N. aquilo, but even there its abundance and distribution have decreased dramatically in surveys over the last several decades. Therefore, we recommend that the species’ conservation status under the Environment Protection and Biodiversity Conservation Act 1999 be changed from ‘vulnerable’ to ‘endangered’.

2020 ◽  
Author(s):  
N Attias ◽  
E Gurarie ◽  
W F Fagan ◽  
G Mourão

Abstract Basic knowledge of species biology and ecology is essential for the assessment of species conservation status and planning for efficient conservation strategies; however, this information is not always readily available. Here we use movement behavior to understand the ecology and social biology of the poorly known southern three-banded armadillo (Tolypeutes matacus). We used VHF and GPS telemetry to monitor 26 individuals from two sites in the Pantanal wetlands of Brazil. We characterized armadillo activity patterns, evaluated the relationship between sex and body mass with home range size and mean daily distance traveled, and examined home and core range overlap. Three-banded armadillos were active on average for 5.5 ± 2.8 h/day, with most of their activity concentrated in the first half of the night. Adult males were heavier and had larger home ranges than adult females. Home range size scaled positively with body mass for males, but not for females. Core ranges for females overlapped little (< 1%) regardless of age, but home ranges for males overlapped both with other males (12%) and females (18%). Our data suggest that three-banded armadillos are mainly a nocturnal species. Home range and spacing patterns point to a generally asocial behavior and a polygynous or promiscuous mating system. We hope that the data generated as a result of this project will contribute to this species’ conservation in Brazil and elsewhere by guiding future management and research efforts.


2019 ◽  
Vol 46 (2) ◽  
pp. 104 ◽  
Author(s):  
Shannon J. Dundas ◽  
Katinka X. Ruthrof ◽  
Giles E. St.J. Hardy ◽  
Patricia A. Fleming

Context Camera trapping is a widely used monitoring tool for a broad range of species across most habitat types. Camera trapping has some major advantages over other trapping methods, such as pitfall traps, because cameras can be left in the field for extended periods of time. However, there is still a need to compare traditional trapping methods with newer techniques. Aims To compare trap rates, species richness and community composition of small mammals and reptiles by using passive, unbaited camera traps and pitfall traps. Methods We directly compared pitfall trapping (20-L buried buckets) with downward-facing infrared-camera traps (Reconyx) to survey small reptiles and mammals at 16 sites within a forested habitat in south-western Australia. We compared species captured using each method, as well as the costs associated with each. Key results Overall, we recorded 228 reptiles, 16 mammals and 1 frog across 640 pitfall trap-nights (38.3 animal captures per 100 trap-nights) compared to 271 reptiles and 265 mammals (for species likely to be captured in pitfall traps) across 2572 camera trap nights (20.8 animal captures per 100 trap-nights). When trap effort is taken into account, camera trapping was only 23% as efficient as pitfall trapping for small reptiles (mostly Scincidae), but was five times more efficient for surveying small mammals (Dasyuridae). Comparing only those species that were likely to be captured in pitfall traps, 13 species were recorded by camera trapping compared with 20 species recorded from pitfall trapping; however, we found significant (P<0.001) differences in community composition between the methods. In terms of cost efficacy, camera trapping was the more expensive method for our short, 4-month survey when taking the cost of cameras into consideration. Conclusions Applicability of camera trapping is dependent on the specific aims of the intended research. Camera trapping is beneficial where community responses to ecosystem disturbance are being tested. Live capture of small reptiles via pitfall trapping allows for positive species identification, morphological assessment, and collection of reference photos to help identify species from camera photos. Implications As stand-alone techniques, both survey methods under-represent the available species present in a region. The use of more than one survey method improves the scope of fauna community assessments.


Author(s):  
M. L. Allen ◽  
M. C. Sibarani ◽  
L. Utoyo ◽  
M. Krofel

Rapid and widespread biodiversity losses around the world make it important to survey and monitor endangered species, especially in biodiversity hotspots. Bukit Barisan Selatan National Park (BBSNP) is one of the largest conserved areas on the island of Sumatra, and is important for the conservation of many threatened species. Sumatran tigers (Panthera tigris sumatrae) are critically endangered and serve as an umbrella species for conservation, but may also affect the activity and distribution of other carnivores. We deployed camera traps for 8 years in an area of Bukit Barisan Selatan National Park (BBSNP) with little human activity to document the local terrestrial mammal community and investigate tiger spatial and temporal overlap with other carnivore species. We detected 39 mammal species including Sumatran tiger and several other threatened mammals. Annual species richness averaged 21.5 (range 19–24) mammals, and remained stable over time. The mammal order significantly affected annual detection of species and the number of cameras where a species was detected, while species conservation status did not. Tigers exhibited a diurnal activity pattern, and had the highest temporal overlap with marbled cats (Pardofelis marmorata), dholes (Cuon alpinus), and Malayan sun bears (Helarctos malayanus), but little overlap with other carnivores. These findings suggest that some smaller carnivores might be adjusting temporal activity to avoid tigers or mesocarnivores. The stable trends in richness of terrestrial mammal species show that BBSNP remains an important hotspot for the conservation of biodiversity.


Check List ◽  
2016 ◽  
Vol 12 (1) ◽  
pp. 1830 ◽  
Author(s):  
Kassius Klay Santos ◽  
Gabrielle Soares Muniz Pacheco ◽  
Marcelo Passamani

Information about the occurrence of medium-sized and large mammals in the Cerrado and the Atlantic Forest is essential for monitoring the conservation status of these species in such biodiversity hotspots. This study presents the results of a survey of medium-sized and large mammals from Quedas do Rio Bonito Ecological Park, located in an ecotone between Cerrado and Atlantic Forest in Southeastern Brazil. Four sampling methods were used: sand plots, camera traps, line transects and tomahawk traps. We recorded 20 species belonging to 12 families and 7 orders, with a high occurrence of Carnivora (50%). We highlight the occurrence of five endangered species: Chrysocyon brachyurus, Leopardus pardalis, L. guttulus, Puma yagouaroundi and P. concolor. The species with the highest frequencies of occurrence were P. concolor (27%), C. brachyurus (17%), and Sylvilagus brasiliensis (13%). Our results confirm that, despite their small size, forest fragments are essential for “top-of-the-chain” species conservation in the region.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1600
Author(s):  
Swapnil Kumbhojkar ◽  
Reuven Yosef ◽  
Abhinav Mehta ◽  
Shrey Rakholia

The suitability of the camera trap–retrap method was explored for identifying territories and studying the spatial distribution of leopards (Panthera pardus fusca) in the Jhalana Reserve Forest, Jaipur, India. Data from two years (November 2017 to November 2019, N = 23,208 trap-hours) were used to provide estimates of minimum home-range size and overlap. We conducted home-range analysis and estimation, using the minimum convex polygon (MCP) method with geographic information system (GIS) tools. We are aware of the limitations and advantages of camera trapping for long-term monitoring. However, the limitations of the research permit allowed only the use of camera traps to estimate the home ranges. A total of 25 leopards were identified (male = 8, female = 17). No territorial exclusivity was observed in either of the sexes. However, for seven females, we observed familial home-range overlaps wherein daughters established home ranges adjacent to or overlapping their natal areas. The median home range, as calculated from the MCP, was 305.9 ha for males and 170.3 ha for females. The median percentage overlap between males was 10.33%, while that between females was 3.97%. We concluded that camera trapping is an effective technique to map the territories of leopards, to document inter- and intraspecific behaviors, and to elucidate how familial relationships affect dispersal.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1949
Author(s):  
Andrea Miranda Paez ◽  
Mekala Sundaram ◽  
Janna R. Willoughby

The conservation and management of wildlife requires the accurate assessment of wildlife population sizes. However, there is a lack of synthesis of research that compares methods used to estimate population size in the wild. Using a meta-analysis approach, we compared the number of detected individuals in a study made using live trapping and less invasive approaches, such as camera trapping and genetic identification. We scanned 668 papers related to these methods and identified data for 44 populations (all focused on mammals) wherein at least two methods (live trapping, camera trapping, genetic identification) were used. We used these data to quantify the difference in number of individuals detected using trapping and less invasive methods using a regression and used the residuals from each regression to evaluate potential drivers of these trends. We found that both trapping and less invasive methods (camera traps and genetic analyses) produced similar estimates overall, but less invasive methods tended to detect more individuals compared to trapping efforts (mean = 3.17 more individuals). We also found that the method by which camera data are analyzed can significantly alter estimates of population size, such that the inclusion of spatial information was related to larger population size estimates. Finally, we compared counts of individuals made using camera traps and genetic data and found that estimates were similar but that genetic approaches identified more individuals on average (mean = 9.07 individuals). Overall, our data suggest that all of the methods used in the studies we reviewed detected similar numbers of individuals. As live trapping can be more costly than less invasive methods and can pose more risk to animal well-fare, we suggest minimally invasive methods are preferable for population monitoring when less-invasive methods can be deployed efficiently.


2019 ◽  
Vol 2 ◽  
Author(s):  
Sirma Zidarova

Field data on the terrestrial mammalian fauna (Eulipotyphla, Lagomorpha, Rodentia, Carnivora, Artiodactyla) of Lozen Мountain collected from 2005 untill 2019 were summarized. Several methods were used: live trapping, pitfall trapping, camera trapping, transects for signs (e.g. prints and scats), and visual observations. The investigation revealed relatively high species richness of the mammalian fauna in the area. The species composition of mammal associations in forested and open habitats, the conservation status and zoogeographic classification of the recorded species are presented. The distribution and habitat preferences of particular species (Neomys fodiens, Muscardinus avellanarius, Canis aureus, etc.) are discussed. The significance of the natural and the semi-natural habitats in Lozen Mountain for mammalian populations is considered. The main threats for the mammals and their habitats on the territory of Natura 2000 site “Lozenska planina” (BG0000165) are emphasized and recommendations for future management and monitoring activities are proposed.


2017 ◽  
Vol 23 (1) ◽  
pp. 43 ◽  
Author(s):  
J. Smith ◽  
S. Legge ◽  
A. James ◽  
K. Tuft

Camera traps are being increasingly used in biological surveys. One of the most common uses of camera trap data is the generation of species inventories and estimations of species richness. Many authors have advocated for increased camera trap-nights (long deployment times or more cameras in an array) to detect rare or wide-ranging species. However, in practice, the number of traps and the duration of surveys are constrained; a survey leader must make decisions about allocating the available cameras to sites. Here we investigate the effect of deployment time, camera array size and number of sites on detection of saxicoline mammal and varanid species obtained from surveys of discrete vegetation pockets in tropical Australia. This paper provides an analysis method for optimising decisions about how a limited number of cameras should be deployed across sites. We found that increasing the number of sites leads to larger species richness estimates in a shorter period. Increasing the number of cameras per site also leads to higher species richness estimates in a shorter time, but not to the same extent as increasing the number of sites. With fewer sites used or smaller arrays deployed at each site, a longer deployment duration is required, especially for rarer or wider-ranging species, or those not attracted to bait. Finally, we compared estimates of species richness generated by our camera trapping to those generated by live trapping at a subset of our sites, and found camera traps generated much larger estimates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bryan Andrew Lazarus ◽  
Azlan Che-Amat ◽  
Muhammad Muzammil Abdul Halim Shah ◽  
Azwan Hamdan ◽  
Hasliza Abu Hassim ◽  
...  

AbstractNatural salt lick (sira) is a strategic localisation for ecological wildlife assemblage to exhibit geophagy which may act as a population dynamic buffer of prey and predators. Undoubtedly, many agree that geophagy at natural licks is linked to nutritional ecology, health and assembly places facilitating social interaction of its users. Overall, natural salt licks not only save energy of obtaining nutrient leading to health maintenance but also forms the basis of population persistence. The Royal Belum Rainforest, Malaysia (Royal Belum) is a typical tropical rainforest in Malaysia rich in wildlife which are mainly concentrated around the natural salt lick. Since this is one of the most stable fauna ecology forest in Malaysia, it is timely to assess its impact on the Malayan tiger (Panthera tigris) home range dynamics. The three-potential home ranges of the Malayan tiger in this rainforest were selected based on animal trails or foot prints surrounding the salt lick viz (e.g. Sira Kuak and Sira Batu; Sira Rambai and Sira Buluh and Sira Papan) as well as previous sightings of a Malayan tiger in the area, whose movement is dependent on the density and distribution of prey. Camera traps were placed at potential animal trails surrounding the salt lick to capture any encountered wildlife species within the area of the camera placements. Results showed that all home ranges of Malayan tiger were of no significance for large bodied prey availability such as sambar deer (Rusa unicolor), and smaller prey such as muntjacs (Muntiacus muntjac) and wild boar (Sus scrofa). Interestingly, all home range harbour the Malayan tiger as the only sole predator. The non-significance of prey availability at each home range is attributed to the decline of the Malayan tiger in the rainforest since tigers are dependant on the movement of its preferred prey surrounding natural salt licks. Thus, the information from this study offers fundamental knowledge on the importance of prey-predator interaction at salt lick which will help in designing strategy in rewilding or rehabilitation programs of the Malayan tiger at the Royal Belum Rainforest.


Oryx ◽  
2020 ◽  
pp. 1-4
Author(s):  
Germán Garrote ◽  
Beyker Castañeda ◽  
Jose Manuel Escobar ◽  
Laura Pérez ◽  
Brayan Marín ◽  
...  

Abstract The giant otter Pteronura brasiliensis, categorized as Endangered on the IUCN Red List, was once widely distributed throughout South America. By the middle of the 20th century the giant otter had become locally extinct along the main rivers of the Orinoco basin. Although some populations seem to have recovered, the paucity of information available does not permit a full evaluation of the species' conservation status. The objective of this study was to estimate the abundance and density of the giant otter population along the Orinoco river in the municipality of Puerto Carreño, Vichada, Colombia, where there is important commercial and recreational fishing. Thirty-nine linear km were surveyed, repeatedly, with a total of 315 km of surveys. Population size was estimated by direct counts of individuals. All individuals detected were photographed and identified individually from their throat pelage patterns. In total, 30 otters were identified, giving a minimum density of 0.77 individuals per km, one of the highest reported for the species in Colombia. Given the high density in this well-developed area, our results highlight the importance of this population for the conservation of the species.


Sign in / Sign up

Export Citation Format

Share Document