scholarly journals Impact of natural salt lick on the home range of Panthera tigris at the Royal Belum Rainforest, Malaysia

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bryan Andrew Lazarus ◽  
Azlan Che-Amat ◽  
Muhammad Muzammil Abdul Halim Shah ◽  
Azwan Hamdan ◽  
Hasliza Abu Hassim ◽  
...  

AbstractNatural salt lick (sira) is a strategic localisation for ecological wildlife assemblage to exhibit geophagy which may act as a population dynamic buffer of prey and predators. Undoubtedly, many agree that geophagy at natural licks is linked to nutritional ecology, health and assembly places facilitating social interaction of its users. Overall, natural salt licks not only save energy of obtaining nutrient leading to health maintenance but also forms the basis of population persistence. The Royal Belum Rainforest, Malaysia (Royal Belum) is a typical tropical rainforest in Malaysia rich in wildlife which are mainly concentrated around the natural salt lick. Since this is one of the most stable fauna ecology forest in Malaysia, it is timely to assess its impact on the Malayan tiger (Panthera tigris) home range dynamics. The three-potential home ranges of the Malayan tiger in this rainforest were selected based on animal trails or foot prints surrounding the salt lick viz (e.g. Sira Kuak and Sira Batu; Sira Rambai and Sira Buluh and Sira Papan) as well as previous sightings of a Malayan tiger in the area, whose movement is dependent on the density and distribution of prey. Camera traps were placed at potential animal trails surrounding the salt lick to capture any encountered wildlife species within the area of the camera placements. Results showed that all home ranges of Malayan tiger were of no significance for large bodied prey availability such as sambar deer (Rusa unicolor), and smaller prey such as muntjacs (Muntiacus muntjac) and wild boar (Sus scrofa). Interestingly, all home range harbour the Malayan tiger as the only sole predator. The non-significance of prey availability at each home range is attributed to the decline of the Malayan tiger in the rainforest since tigers are dependant on the movement of its preferred prey surrounding natural salt licks. Thus, the information from this study offers fundamental knowledge on the importance of prey-predator interaction at salt lick which will help in designing strategy in rewilding or rehabilitation programs of the Malayan tiger at the Royal Belum Rainforest.

Oryx ◽  
2014 ◽  
Vol 48 (3) ◽  
pp. 370-377 ◽  
Author(s):  
Achara Simcharoen ◽  
Tommaso Savini ◽  
George A. Gale ◽  
Saksit Simcharoen ◽  
Somphot Duangchantrasiri ◽  
...  

AbstractTigers Panthera tigris are highly threatened and continue to decline across their entire range. Actions to restore and conserve populations need to be based on science but, in South-east Asia, information on ecology and behaviour of tigers is lacking. This study reports the relationship between the home range size of female tigers and prey abundance, using data from radio-collared tigers in Huai Kha Khaeng Wildlife Sanctuary, Thailand, and published data from other studies. A total of 11 tigers, four males and seven females, were fitted with global positioning system collars, to estimate home ranges using 95 and 100% minimum convex polygons (MCP). Prey abundance was estimated by faecal accumulation rates. The mean home range size of male tigers was 267 and 294 km2 based on 95 and 100% MCPs, respectively; the mean female home range size was 70 and 84 km2, respectively. Territories of male and female tigers had little overlap, which indicated both sexes were territorial. Mean densities of the prey species sambar Rusa unicolor, barking deer Muntiacus muntjac and large bovids were 7.5, 3.5 and 3.0 km−2, respectively. When female home range size and prey abundance were compared at six locations in Thailand, and at other sites in India, Nepal, Bangladesh and Russia, a significant negative correlation was found between prey abundance and home range size. Monitoring this relationship can provide managers with metrics for setting conservation goals.


Author(s):  
Stanley Anderson ◽  
Doug Wachob ◽  
Rachel Wigglesworth ◽  
Nathan McClennen

A comparative study of coyote (Canis latrans) home range, activity, habitat use, and diet in Grand Teton National Park (GTNP) and residential/agricultural areas surrounding Jackson, Wyoming was begun in May 1998 and will continue until August 1999. Twenty-seven coyotes were captured and fitted with radio collars equipped with activity and mortality sensors. Eleven of the coyotes reside in and around the residential/agricultural areas while 15 of the coyotes range from Moran Junction south to the National Elk Refuge. One coyote has remained in Bridger-Teton National Forest near Upper Slide Lake. Marked coyotes were monitored three times a week in the summer and two times a week during the winter via radio telemetry. Preliminary data suggests that the home range size of coyotes in GTNP is larger than that of coyotes in developed areas. Activity levels appear to be lower in residential/agricultural areas during daylight hours. Coyote diet is currently being assessed via scat dissection, and prey availability was determined using Sherman live traps during the summer and early fall. Habitat use will be determined by overlaying coyote home ranges onto habitat maps. Vegetation plots were conducted in five habitat types (aspen, conifer, grass, riparian, sage) to determine vegetation structure. All of the above methods will be repeated in summer 1999. During winter 1999, telemetry surveys and scat collection will continue. Additionally, snow tracking surveys and coyote observations will be conducted to determine coyote group size and behavior. If time allows, relative density estimates and social organization will be determined. The intention of this study is also to collect baseline data on coyotes before and during wolf (Canis lupus) recolonization of Jackson Hole.


2020 ◽  
Vol 33 (3) ◽  
Author(s):  
Nor Bazilah Razali ◽  
Muhammad Syafiq Haiqal Shafie ◽  
Rahaniza Ali Mohd Jobran ◽  
Nur Hayati Abdul Karim ◽  
Shamsul Khamis ◽  
...  

Mineral reservoirs or salt licks are commonly used by wildlife to regulate the concentration of salt and minerals in their bodies. Salt lick utilisation is known to be influenced by the chemical composition, but information on their physical properties, particularly vegetation surrounding the salt licks is scarce. In this study, physical factors and wildlife utilisation at two natural salt licks (SPU and SPS) located in Perak, Malaysia, were determined. Wildlife visitation data were retrieved from camera traps. SPU exhibits two reservoirs represented by rocky and clay substrate, with minimally dense vegetation dominated by hardwood species and climbers. SPS encompasses muddy topsoil, open canopy cover, with highly dense forest floor vegetation. The wildlife survey shows a higher frequency of visitation in SPS, especially by ungulates, potentially due to dense understorey foliage that provides foraging sites for these animals. SPU exhibits more diverse but less frequent wildlife species, particularly primates, carnivores, and avian groups. High emergence and closed canopy cover at this lick serve as perching sites for primates and birds, while less dense understory vegetation could aid in prey detection among carnivore. Regardless of their physical assemblages, salt licks are an essential local hotspot for wildlife, therefore, elucidating the need to prioritise conservation areas by maximising the complementarities of salt licks.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1600
Author(s):  
Swapnil Kumbhojkar ◽  
Reuven Yosef ◽  
Abhinav Mehta ◽  
Shrey Rakholia

The suitability of the camera trap–retrap method was explored for identifying territories and studying the spatial distribution of leopards (Panthera pardus fusca) in the Jhalana Reserve Forest, Jaipur, India. Data from two years (November 2017 to November 2019, N = 23,208 trap-hours) were used to provide estimates of minimum home-range size and overlap. We conducted home-range analysis and estimation, using the minimum convex polygon (MCP) method with geographic information system (GIS) tools. We are aware of the limitations and advantages of camera trapping for long-term monitoring. However, the limitations of the research permit allowed only the use of camera traps to estimate the home ranges. A total of 25 leopards were identified (male = 8, female = 17). No territorial exclusivity was observed in either of the sexes. However, for seven females, we observed familial home-range overlaps wherein daughters established home ranges adjacent to or overlapping their natal areas. The median home range, as calculated from the MCP, was 305.9 ha for males and 170.3 ha for females. The median percentage overlap between males was 10.33%, while that between females was 3.97%. We concluded that camera trapping is an effective technique to map the territories of leopards, to document inter- and intraspecific behaviors, and to elucidate how familial relationships affect dispersal.


2017 ◽  
Vol 11 (2) ◽  
pp. 118
Author(s):  
Febri Anggriawan Widodo ◽  
Stephanus Hanny ◽  
Eko Hery Satriyo Utomo ◽  
Zulfahmi ◽  
Kusdianto ◽  
...  

Managing the critically endangered Sumatran tiger (Panthera tigris sumatrae) needs accurate information on its abundance and availability of prey at the landscape level. Bukit Rimbang Bukit Baling Wildlife Reserve in central Sumatra represents an important area for tigers at local, regional and global levels. The area has been recognized as a long-term priority Tiger Conservation Landscape. Solid baseline information on tigers and prey is fundamentally needed for the management. The objective of this study was to produce robust estimate of tiger density and prey a vailability in the reserve. We used camera traps to systematically collecting photographic samples of tigers and prey using Spatial Capture Recapture (SCR) framework. We estimated density for tigers and calculated trap success rate (TSR; independent pictures/100 trap nights) for main prey species. Three blocks in the reserve were sampled from 2012 to 2015 accumulating a total of 8,125 effective trap nights. We captured 14 tiger individuals including three cubs. We documented the highest density of tigers (individuals/100 km2) in southern sampling block (based on traditional capture recapture (TCR) : 1.52 ± SE 0.55; based on Maximum Likelihood (ML) SCR:0.51 ± SE 0.22) and the lowest in northeastern sampling block (TCR: 0.77 ±SE 0.39; ML SCR: 0.19 ± SE 0.16). The highest TSR of main prey (large ungulates and primates) was in northeastern block (35.01 ± SD 8.67) and the lowest was in southern block (12.42 ± SD 2.91). The highest level of disturbance, as indicated by TSR of people, was in northeastern sampling block (5.45 ± SD 5.64) and the lowest in southern (1.26 ± SD 2.41). The results suggested that human disturbance strongly determine the density of tigers in the area, more than prey availability. To recover tigers, suggested strategies include controlling human disturbance and poaching to the lowest possible level in addition to maintaining main prey availability.Keywords: Capture-Mark-Recapture; closed population; habitat management; population viability; tiger recovery Harimau dan Mangsanya di Bukit Rimbang Bukit Baling: Basis Informasi Kelimpahan untuk Pengelolaan Suaka Margasatwa yang EfektifIntisariMengelola spesies kunci seperti harimau Sumatera (Panthera tigris sumatrae) yang dalam kondisi kritis, memerlukan informasi terkait populasi satwa tersebut dan ketersediaan satwa mangsanya pada tingkat lanskap. Suaka Margasatwa Bukit Rimbang Bukit Baling di Sumatera bagian tengah merupakan sebuah kawasan penting untuk harimau baik pada tingkat lokal, regional, maupun global. Kawasan ini telah diakui sebagai sebuah kawasan prioritas jangka panjang Tiger Conservation Landascapes (TCL). Informasi dasar yang sahih mengenai populasi harimau dan mangsanya sangat dibutuhkan untuk pengelolaan efektif satwa tersebut dan kawasan habitatnya. Tujuan dari studi ini adalah untuk menghasilkan perkiraan kepadatan populasi harimau dan ketersediaan mangsanya di kawasan suaka margasatwa tersebut. Kami menggunakan perangkap kamera untuk mengumpulkan sampel gambar harimau dan mangsanya secara sistematis menggunakan kerangka kerja Spatial Capture Recapture (SCR). Kami memperkirakan kepadatan harimau dan menghitung angka keberhasilan perangkap atau trap success rate (TSR: gambar independen/100 hari aktif kamera) untuk satwa mangsa utama. Tiga blok di dalam suaka margasatwa telah disurvei dari tahun 2012 hingga 2015 mengakumulasikan keseluruhan 8,125 hari kamera aktif. Kami merekam 14 individu harimau termasuk tiga anak. Kami mendokumentasikan kepadatan tertinggi harimau (individu/100 km2) di blok sampling selatan (berdasarkan pendekatan analisa capture recapture tradisional (TCR) 1.52 ± SE 0.55; berdasarkan Maximum Likelihood (ML) SCR 0.51 ± SE 0.22) dan terendah di utara-timur (TCR: 0.77 ±SE 0.39; ML SCR: 0.19 ± SE 0.16). TSR tertinggi dari mangsa utama (ungulate besar dan primata) adalah di blok sampling utara-timur (35.01 ± SD 8.67) dan terendah adalah di blok sampling selatan (12.42 ± SD 2.91). Tingkat gangguan tertinggi, sebagaimana diindikasikan oleh TSR manusia, adalah di blok sampling utara-timur (5.45 ± SD 5.64) dan terendahnya di blok sampling selatan (1.26 ± SD 2.41). Hasil studi ini mengindikasikan bahwa gangguan manusia yang sangat tinggi sangat menentukan kepadatan harimau di kawasan ini, melebihi pengaruh dari ketersediaan satwa mangsa. Untuk memulihkan populasi harimau, disarankan beberapa strategi termasuk mengendalikan gangguan manusia dan perburuan hingga ke tingkat terendah, selain tetap memastikan ketersediaan satwa mangsa utama yang memadai.


2002 ◽  
Vol 8 (4) ◽  
pp. 271 ◽  
Author(s):  
Peter G. Cale

White-browed Babbler Pomatostomus superciliosus groups occupying linear strips of vegetation had breeding territories that were smaller in area and had longer linear dimensions than those occupying patches. A group's non-breeding home range was larger than its breeding territory. Groups occupying linear/patch home ranges expanded the linear extent and area of their home ranges more than those within other home range configurations. Some groups moved during the non-breeding season and this was more likely to occur if the group occupied a remnant with a low abundance of invertebrates during summer. Some groups that moved returned prior to the next breeding season, but the majority were never seen again. New groups moved into the study sites and established in vacant home ranges. This suggests that those groups that left the study sites may have established new home ranges elsewhere. Breeding site fidelity was lower in groups that had failed in previous breeding attempts. Therefore, group movements were influenced by the feeding and breeding quality of the habitat. However, the configuration of the local population also influenced group movements with those groups on the edge of a local population being more likely to move than those in the interior. New groups were formed by two processes; group dispersal, where groups generally filled a vacant home range, and group budding, which involved the splitting of a large group. Group dispersal maintained group densities while group budding increased the density of groups in a local population. These two processes were common, producing localized fluctuations in the density of groups. Since babbler groups contain only one breeding pair, changes in group density represent changes in effective population size. Therefore, group dynamics may be important to the persistence of local populations of White-browed Babblers, especially in landscapes that have suffered from habitat loss and fragmentation.


2016 ◽  
Vol 62 (5) ◽  
pp. 537-547 ◽  
Author(s):  
M. S. Sarkar ◽  
K. Ramesh ◽  
J. A. Johnson ◽  
S. Sen ◽  
P. Nigam ◽  
...  

2007 ◽  
Vol 34 (2) ◽  
pp. 94 ◽  
Author(s):  
Rodney P. Kavanagh ◽  
Matthew A. Stanton ◽  
Traecey E. Brassil

The koala (Phascolarctos cinereus) is a charismatic, high-profile species whose conservation needs are commonly perceived to be incompatible with logging. However, koala biology and the results of chronosequence studies elsewhere suggest that this species may tolerate a degree of habitat alteration caused by logging. In this study, 30 koalas, five in each of six areas available for logging within a mixed white cypress pine (Callitris glaucophylla)–Eucalyptus forest in north-western New South Wales, were radio-tracked for one year during 1997–1998 to determine their movements, home-range sizes and tree preferences. Five months after the study began, three of these areas were logged selectively for sawlogs and thinnings of the white cypress pine, a tree that is important to koalas for daytime shelter. This removed about one-quarter of the stand basal area, but the eucalypt component was unaffected. The remaining three areas were left undisturbed as controls. Radio-tracking continued in all six areas for another seven months. Koalas continued to occupy all or part of their previous home-ranges after selective logging, and home-range sizes remained similar between logged and unlogged areas. Home-ranges for both sexes overlapped and were ~12 ha for males and 9 ha for females. Koala survival and the proportions of breeding females were similar in logged and unlogged areas. The principal food trees of the koala were red gums, mainly Eucalyptus blakelyi and E. chloroclada, and the pilliga box (E. pilligaensis), none of which were logged in this study. These results suggest that selective logging for white cypress pine does not appear to adversely affect koala populations and that koalas may not be as sensitive to logging as previously thought. Further work is required to determine thresholds in the level of retention of koala food trees in logging operations.


2009 ◽  
Vol 36 (5) ◽  
pp. 422 ◽  
Author(s):  
K. E. Moseby ◽  
J. Stott ◽  
H. Crisp

Control of introduced predators is critical to both protection and successful reintroduction of threatened prey species. Efficiency of control is improved if it takes into account habitat use, home range and the activity patterns of the predator. These characteristics were studied in feral cats (Felis catus) and red foxes (Vulpes vulpes) in arid South Australia, and results are used to suggest improvements in control methods. In addition, mortality and movement patterns of cats before and after a poison-baiting event were compared. Thirteen cats and four foxes were successfully fitted with GPS data-logger radio-collars and tracked 4-hourly for several months. High intra-specific variation in cat home-range size was recorded, with 95% minimum convex polygon (MCP) home ranges varying from 0.5 km2 to 132 km2. Cat home-range size was not significantly different from that of foxes, nor was there a significant difference related to sex or age. Cats preferred habitat types that support thicker vegetation cover, including creeklines and sand dunes, whereas foxes preferred sand dunes. Cats used temporary focal points (areas used intensively over short time periods and then vacated) for periods of up to 2 weeks and continually moved throughout their home range. Aerial baiting at a density of 10 baits per km2 was ineffective for cats because similar high mortality rates were recorded for cats in both baited and unbaited areas. Mortality was highest in young male cats. Long-range movements of up to 45 km in 2 days were recorded in male feral cats and movement into the baited zone occurred within 2 days of baiting. Movement patterns of radio-collared animals and inferred bait detection distances were used to suggest optimum baiting densities of ~30 baits per km2 for feral cats and 5 per km2 for foxes. Feral cats exhibited much higher intra-specific variation in activity patterns and home-range size than did foxes, rendering them a potentially difficult species to control by a single method. Control of cats and foxes in arid Australia should target habitats with thick vegetation cover and aerial baiting should ideally occur over areas of several thousand square kilometres because of large home ranges and long-range movements increasing the chance of fast reinvasion. The use of temporary focal points suggested that it may take several days or even weeks for a cat to encounter a fixed trap site within their home range, whereas foxes should encounter them more quickly as they move further each day although they have a similar home-range size. Because of high intra-specific variability in activity patterns and home-range size, control of feral cats in inland Australia may be best achieved through a combination of control techniques.


2010 ◽  
Vol 365 (1550) ◽  
pp. 2221-2231 ◽  
Author(s):  
John G. Kie ◽  
Jason Matthiopoulos ◽  
John Fieberg ◽  
Roger A. Powell ◽  
Francesca Cagnacci ◽  
...  

Recent advances in animal tracking and telemetry technology have allowed the collection of location data at an ever-increasing rate and accuracy, and these advances have been accompanied by the development of new methods of data analysis for portraying space use, home ranges and utilization distributions. New statistical approaches include data-intensive techniques such as kriging and nonlinear generalized regression models for habitat use. In addition, mechanistic home-range models, derived from models of animal movement behaviour, promise to offer new insights into how home ranges emerge as the result of specific patterns of movements by individuals in response to their environment. Traditional methods such as kernel density estimators are likely to remain popular because of their ease of use. Large datasets make it possible to apply these methods over relatively short periods of time such as weeks or months, and these estimates may be analysed using mixed effects models, offering another approach to studying temporal variation in space-use patterns. Although new technologies open new avenues in ecological research, our knowledge of why animals use space in the ways we observe will only advance by researchers using these new technologies and asking new and innovative questions about the empirical patterns they observe.


Sign in / Sign up

Export Citation Format

Share Document