scholarly journals The cost of replication fidelity in an RNA virus

2005 ◽  
Vol 102 (29) ◽  
pp. 10233-10237 ◽  
Author(s):  
V. Furio ◽  
A. Moya ◽  
R. Sanjuan
2006 ◽  
Vol 274 (1607) ◽  
pp. 225-230 ◽  
Author(s):  
Victoria Furió ◽  
Andrés Moya ◽  
Rafael Sanjuán

Mutation rates should be governed by at least three evolutionary factors: the need for beneficial mutations, the benefit of minimizing the mutational load and the cost of replication fidelity. RNA viruses show high mutation rates compared with DNA micro-organisms, and recent findings suggest that the cost of fidelity might play a role in the evolution of increased mutation rates. Here, by analysing previously published data from HIV-1 reverse transcriptase in vitro assays, we show a trade-off between enzymatic accuracy and the maximum rate of polymerization, thus providing a biochemical basis for the fitness cost of fidelity in HIV-1. This trade-off seems to be related to inefficient extension of mispairs, which increases fidelity at the expense of the polymerization rate. Since in RNA viruses fast replication is critical for survival, this could impose a high cost of fidelity and favour the evolution of high mutation rates.


Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 523-532 ◽  
Author(s):  
Paul E Turner ◽  
Lin Chao

Abstract Sex allows beneficial mutations that occur in separate lineages to be fixed in the same genome. For this reason, the Fisher-Muller model predicts that adaptation to the environment is more rapid in a large sexual population than in an equally large asexual population. Sexual reproduction occurs in populations of the RNA virus φ6 when multiple bacteriophages coinfect the same host cell. Here, we tested the model's predictions by determining whether sex favors more rapid adaptation of φ6 to a bacterial host, Pseudomonas phaseolicola. Replicate populations of φ6 were allowed to evolve in either the presence or absence of sex for 250 generations. All experimental populations showed a significant increase in fitness relative to the ancestor, but sex did not increase the rate of adaptation. Rather, we found that the sexual and asexual treatments also differ because intense intrahost competition between viruses occurs during coinfection. Results showed that the derived sexual viruses were selectively favored only when coinfection is common, indicating that within-host competition detracts from the ability of viruses to exploit the host. Thus, sex was not advantageous because the cost created by intrahost competition was too strong. Our findings indicate that high levels of coinfection exceed an optimum where sex may be beneficial to populations of φ6, and suggest that genetic conflicts can evolve in RNA viruses.


2021 ◽  
Author(s):  
Stephen A. Goldstein ◽  
Joe Brown ◽  
Brent S. Pedersen ◽  
Aaron R. Quinlan ◽  
Nels C. Elde

AbstractThe ongoing SARS-CoV-2 pandemic is the third zoonotic coronavirus identified in the last twenty years. Previously, four other known coronaviruses moved from animal reservoirs into humans and now cause primarily mild-to-moderate respiratory disease. The emergence of these viruses likely involved a period of intense transmission before becoming endemic, highlighting the recurrent threat to human health posed by animal coronaviruses. Enzootic and epizootic coronaviruses of diverse lineages pose a significant threat to livestock, as most recently observed for virulent strains of porcine epidemic diarrhea virus (PEDV) and swine acute diarrhea-associated coronavirus (SADS-CoV). Unique to RNA viruses, coronaviruses encode a proofreading exonuclease (ExoN) that lowers point mutation rates to increase the viability of large RNA virus genomes, which comes with the cost of limiting virus adaptation via point mutation. This limitation can be overcome by high rates of recombination that facilitate rapid increases in genetic diversification. To compare dynamics of recombination between related sequences, we developed an open-source computational workflow (IDPlot) to measure nucleotide identity, locate recombination breakpoints, and infer phylogenetic relationships. We analyzed recombination dynamics among three groups of coronaviruses with impacts on livestock or human health: SARSr-CoV, Betacoronavirus-1, and SADSr-CoV. We found that all three groups undergo recombination with highly diverged viruses, disrupting phylogenetic relationships and revealing contributions of unknown coronavirus lineages to the genetic diversity of established groups. Dynamic patterns of recombination impact inferences of relatedness between diverse coronaviruses and expand the genetic pool that may contribute to future zoonotic events. These results illustrate the limitations of current sampling approaches for anticipating zoonotic threats to human and animal health.


2014 ◽  
Vol 95 (3) ◽  
pp. 724-732 ◽  
Author(s):  
Nicolas Tromas ◽  
Mark P. Zwart ◽  
Maïté Poulain ◽  
Santiago F. Elena

Phylogenomic evidence suggested that recombination is an important evolutionary force for potyviruses, one of the larger families of plant RNA viruses. However, mixed-genotype potyvirus infections are marked by low levels of cellular coinfection, precluding template switching and recombination events between virus genotypes during genomic RNA replication. To reconcile these conflicting observations, we evaluated the in vivo recombination rate (r g) of Tobacco etch virus (TEV; genus Potyvirus, family Potyviridae) by coinfecting plants with pairs of genotypes marked with engineered restriction sites as neutral markers. The recombination rate was then estimated using two different approaches: (i) a classical approach that assumed recombination between marked genotypes can occur in the whole virus population, rendering an estimate of r g = 7.762×10−8 recombination events per nucleotide site per generation, and (ii) an alternative method that assumed recombination between marked genotypes can occur only in coinfected cells, rendering a much higher estimate of r g = 3.427×10−5 recombination events per nucleotide site per generation. This last estimate is similar to the TEV mutation rate, suggesting that recombination should be at least as important as point mutation in creating variability. Finally, we compared our mutation and recombination rate estimates to those reported for animal RNA viruses. Our analysis suggested that high recombination rates may be an unavoidable consequence of selection for fast replication at the cost of low fidelity.


Author(s):  
N. H. Olson ◽  
T. S. Baker ◽  
Wu Bo Mu ◽  
J. E. Johnson ◽  
D. A. Hendry

Nudaurelia capensis β virus (NβV) is an RNA virus of the South African Pine Emperor moth, Nudaurelia cytherea capensis (Lepidoptera: Saturniidae). The NβV capsid is a T = 4 icosahedron that contains 60T = 240 subunits of the coat protein (Mr = 61,000). A three-dimensional reconstruction of the NβV capsid was previously computed from visions embedded in negative stain suspended over holes in a carbon film. We have re-examined the three-dimensional structure of NβV, using cryo-microscopy to examine the native, unstained structure of the virion and to provide a initial phasing model for high-resolution x-ray crystallographic studiesNβV was purified and prepared for cryo-microscopy as described. Micrographs were recorded ∼1 - 2 μm underfocus at a magnification of 49,000X with a total electron dose of about 1800 e-/nm2.


Author(s):  
James F. Mancuso

IBM PC compatible computers are widely used in microscopy for applications ranging from control to image acquisition and analysis. The choice of IBM-PC based systems over competing computer platforms can be based on technical merit alone or on a number of factors relating to economics, availability of peripherals, management dictum, or simple personal preference.IBM-PC got a strong “head start” by first dominating clerical, document processing and financial applications. The use of these computers spilled into the laboratory where the DOS based IBM-PC replaced mini-computers. Compared to minicomputer, the PC provided a more for cost-effective platform for applications in numerical analysis, engineering and design, instrument control, image acquisition and image processing. In addition, the sitewide use of a common PC platform could reduce the cost of training and support services relative to cases where many different computer platforms were used. This could be especially true for the microscopists who must use computers in both the laboratory and the office.


Author(s):  
H. Rose

The imaging performance of the light optical lens systems has reached such a degree of perfection that nowadays numerical apertures of about 1 can be utilized. Compared to this state of development the objective lenses of electron microscopes are rather poor allowing at most usable apertures somewhat smaller than 10-2 . This severe shortcoming is due to the unavoidable axial chromatic and spherical aberration of rotationally symmetric electron lenses employed so far in all electron microscopes.The resolution of such electron microscopes can only be improved by increasing the accelerating voltage which shortens the electron wave length. Unfortunately, this procedure is rather ineffective because the achievable gain in resolution is only proportional to λ1/4 for a fixed magnetic field strength determined by the magnetic saturation of the pole pieces. Moreover, increasing the acceleration voltage results in deleterious knock-on processes and in extreme difficulties to stabilize the high voltage. Last not least the cost increase exponentially with voltage.


1994 ◽  
Vol 58 (11) ◽  
pp. 832-835 ◽  
Author(s):  
ES Solomon ◽  
TK Hasegawa ◽  
JD Shulman ◽  
PO Walker
Keyword(s):  

1998 ◽  
Vol 138 (2) ◽  
pp. 205-205
Author(s):  
Snellman ◽  
Maljanen ◽  
Aromaa ◽  
Reunanen ◽  
Jyrkinen‐Pakkasvirta ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document