scholarly journals Rb is dispensable for self-renewal and multilineage differentiation of adult hematopoietic stem cells

2006 ◽  
Vol 103 (24) ◽  
pp. 9057-9062 ◽  
Author(s):  
C. R. Walkley ◽  
S. H. Orkin
Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3458-3465 ◽  
Author(s):  
Michael D. Laiosa ◽  
Everett R. Tate

Disorders of the blood system are a significant and growing global health concern and include a spectrum of diseases ranging from aplastic anemia and leukemias to immune suppression. This array of hematological disorders is attributed to the fact that the blood system undergoes a perpetual cycle of turn over with aged and exhausted red and white blood cells undergoing daily replacement. The foundational cells of this replenishment process are comprised of rare hematopoietic stem cells (HSCs) located in the bone marrow that possess the dual function of long-term self-renewal and multilineage differentiation. This constant turnover makes the hematopoietic system uniquely vulnerable to changes in the environment that impact multilineage differentiation, self-renewal, or both. Notably, environmental endocrine-disrupting exposures occurring during development, when HSCs are first emerging, can lead to alterations in HSC programming that impacts the blood and immune systems throughout life. In this review, we describe the process of fetal hematopoiesis and provide an overview of the intrauterine environmental and endocrine-disrupting compounds that disrupt this process. Finally, we describe research opportunities for fetal HSCs as potential sentinels of later-life blood and immune system disorders.


2019 ◽  
Vol 76 ◽  
pp. e2
Author(s):  
Masanori Miyanishi ◽  
Kevin Kao ◽  
Taro Sakamaki ◽  
James Chen ◽  
Katsuyuki Nishi ◽  
...  

Cell Reports ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 964-975 ◽  
Author(s):  
Heather A. Himburg ◽  
Jeffrey R. Harris ◽  
Takahiro Ito ◽  
Pamela Daher ◽  
J. Lauren Russell ◽  
...  

2020 ◽  
Vol 88 ◽  
pp. S58
Author(s):  
Mohamed Eldeeb ◽  
Jonas Ungerbäck ◽  
Mikael Sigvardsson ◽  
David Bryder

2014 ◽  
Vol 42 (8) ◽  
pp. S61
Author(s):  
Yuko Tadokoro ◽  
Koji Eto ◽  
Hideo Ema ◽  
Satoshi Yamazaki ◽  
Akihiko Yoshimura ◽  
...  

2017 ◽  
Vol 53 ◽  
pp. S109-S110
Author(s):  
Xiaofang Wang ◽  
Fang Dong ◽  
Sen Zhang ◽  
Wanzhu Yang ◽  
Zhao Wang ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2309-2309
Author(s):  
Jian Huang ◽  
Peter S. Klein

Abstract Abstract 2309 Hematopoietic stem cells (HSCs) maintain the ability to self-renew and to differentiate into all lineages of the blood. The signaling pathways regulating hematopoietic stem cell (HSCs) self-renewal and differentiation are not well understood. We are very interested in understanding the roles of glycogen synthase kinase-3 (Gsk3) and the signaling pathways regulated by Gsk3 in HSCs. In our previous study (Journal of Clinical Investigation, December 2009) using loss of function approaches (inhibitors, RNAi, and knockout) in mice, we found that Gsk3 plays a pivotal role in controlling the decision between self-renewal and differentiation of HSCs. Disruption of Gsk3 in bone marrow transiently expands HSCs in a b-catenin dependent manner, consistent with a role for Wnt signaling. However, in long-term repopulation assays, disruption of Gsk3 progressively depletes HSCs through activation of mTOR. This long-term HSC depletion is prevented by mTOR inhibition and exacerbated by b-catenin knockout. Thus GSK3 regulates both Wnt and mTOR signaling in HSCs, with opposing effects on HSC self-renewal such that inhibition of Gsk3 in the presence of rapamycin expands the HSC pool in vivo. In the current study, we found that suppression of the mammalian target of rapamycin (mTOR) pathway, an established nutrient sensor, combined with activation of canonical Wnt/ß-catenin signaling, allows the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that combining two clinically approved medications that activate Wnt/ß-catenin signaling and inhibit mTOR increases the number of long-term HSCs in vivo. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document