scholarly journals Influenza A virus NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling

2006 ◽  
Vol 103 (38) ◽  
pp. 14194-14199 ◽  
Author(s):  
B. G. Hale ◽  
D. Jackson ◽  
Y.-H. Chen ◽  
R. A. Lamb ◽  
R. E. Randall
2007 ◽  
Vol 88 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Yeun-Kyung Shin ◽  
Qiang Liu ◽  
Suresh K. Tikoo ◽  
Lorne A. Babiuk ◽  
Yan Zhou

Influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but the mechanism is not clear. Here, it is reported that influenza A virus NS1 protein is responsible for PI3K/Akt pathway activation. It was demonstrated that the NS1 protein interacts with the p85 regulatory subunit of PI3K via direct binding to the SH3 and C-terminal SH2 domains of p85. Consensus binding motifs for SH3 and SH2 domains were found in influenza A virus NS1, namely an SH2-binding motif (YXXXM) at aa 89, SH3-binding motif 1 (PXXP) around aa 164 and SH3-binding motif 2 around aa 212. Mutant virus encoding NS1 protein with mutations in the SH-binding motifs failed to interact with SH domains of p85 and did not activate the PI3K/Akt pathway. The mutant virus is attenuated in Madin–Darby canine kidney cells. Our study has established a novel function of NS1: by interacting with p85 via the SH-binding motifs, NS1 can activate the PI3K/Akt pathway.


Virology ◽  
2010 ◽  
Vol 396 (1) ◽  
pp. 94-105 ◽  
Author(s):  
David Jackson ◽  
Marian J. Killip ◽  
Caroline S. Galloway ◽  
Rupert J. Russell ◽  
Richard E. Randall

Virology ◽  
2015 ◽  
Vol 484 ◽  
pp. 146-152 ◽  
Author(s):  
Leena Ylösmäki ◽  
Constanze Schmotz ◽  
Erkko Ylösmäki ◽  
Kalle Saksela

2007 ◽  
Vol 88 (3) ◽  
pp. 942-950 ◽  
Author(s):  
Yeun-Kyung Shin ◽  
Qiang Liu ◽  
Suresh K. Tikoo ◽  
Lorne A. Babiuk ◽  
Yan Zhou

The phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway has attracted much recent interest due to its central role in modulating diverse downstream signalling pathways associated with cell survival, proliferation, differentiation, morphology and apoptosis. An increasing amount of information has demonstrated that many viruses activate the PI3K/Akt pathway to augment their efficient replication. In this study, the effect of the PI3K/Akt signalling pathway on influenza virus propagation was investigated. It was found that Akt phosphorylation was elevated in the late phase of influenza A/PR/8/34 infection in human lung carcinoma cells (A549). The PI3K-specific inhibitor LY294002 could suppress Akt phosphorylation, suggesting that influenza A virus-induced Akt phosphorylation is PI3K-dependent. UV-irradiated influenza virus failed to induce Akt phosphorylation, indicating that viral attachment and entry were not sufficient to trigger PI3K/Akt pathway activation. Blockage of PI3K/Akt activation by LY294002 and overexpression of the general receptor for phosphoinositides-1 PH domain (Grp1-PH) led to a reduction in virus yield. Moreover, in the presence of LY294002, viral RNA synthesis and viral protein expression were suppressed and, possibly as a consequence of low NP and M1 protein level, viral RNP nuclear export was also suppressed. These data suggest that the PI3K/Akt signalling pathway plays a role in influenza virus propagation.


2007 ◽  
Vol 81 (21) ◽  
pp. 12097-12100 ◽  
Author(s):  
Christina Ehrhardt ◽  
Thorsten Wolff ◽  
Stephan Ludwig

ABSTRACT Recently it has been shown by several laboratories that the influenza A virus nonstructural protein 1 (A/NS1) binds and activates phosphatidylinositol 3-kinase (PI3K). This function of the protein is likely to prevent premature apoptosis induction during viral propagation. Here we show that the B/NS1 protein completely lacks the capacity to induce PI3K signaling. Thus, PI3K activation is another unique function of A/NS1 that is different from the action of its influenza B virus counterpart.


2008 ◽  
Vol 13 (7) ◽  
pp. 581-590 ◽  
Author(s):  
Marta Maroto ◽  
Yolanda Fernandez ◽  
Juan Ortin ◽  
Fernando Pelaez ◽  
M. Angerles Cabello

The NS1 protein is a nonstructural protein encoded by the influenza A virus. It is responsible for many alterations produced in the cellular metabolism upon infection by the virus and for modulation of virus virulence. The NS1 protein is able to perform a large variety of functions due to its ability to bind various types of RNA molecules, from both viral and nonviral origin, and to interact with several cell factors. With the aim of exploring whether the binding of NS1 protein to viral RNA (vRNA) could constitute a novel target for the search of anti-influenza drugs, a filter-binding assay measuring the specific interaction between the recombinant His-NS1 protein from influenza A virus and a radiolabeled model vRNA ( 32P-vNSZ) was adapted to a format suitable for screening and easy automation. Flashplate® technology (PerkinElmer, Waltham, MA), either in 96- or 384-well plates, was used. The Flashplate® wells were precoated with the recombinant His-NS1 protein, and the binding of His-NS1 to a 35S-vNSZ probe was measured. A pilot screening of a collection of 27,520 mixtures of synthetic chemical compounds was run for inhibitors of NS1 binding to vRNA. We found 3 compounds in which the inhibition of NS1 binding to vRNA, observed at submicromolar concentrations, was correlated with a reduction of the cytopathic effect during the infection of cell cultures with influenza virus. These results support the hypothesis that the binding of NS1 to vRNA could be a novel target for the development of anti-influenza drugs. ( Journal of Biomolecular Screening 2008:581-590)


Viruses ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 101 ◽  
Author(s):  
Leena Ylösmäki ◽  
Riku Fagerlund ◽  
Inka Kuisma ◽  
Ilkka Julkunen ◽  
Kalle Saksela

2017 ◽  
Vol 92 (5) ◽  
Author(s):  
Hannah L. Turkington ◽  
Mindaugas Juozapaitis ◽  
Nikos Tsolakos ◽  
Eugenia Corrales-Aguilar ◽  
Martin Schwemmle ◽  
...  

ABSTRACT Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or pandemics. The recent discovery of influenza A-like viruses in bats has raised questions over whether these entities could be a threat to humans. Understanding unique properties of the newly described bat influenza A-like viruses, such as their mechanisms to infect cells or how they manipulate host functions, is critical to assess their likelihood of causing disease. Here, we characterized the bat influenza A-like virus NS1 protein, a key virulence factor, and found unexpected functional divergence of this protein from counterparts in other influenza A viruses. Our study dissects the molecular changes required by bat influenza A-like virus NS1 to adopt classical influenza A virus properties and suggests consequences of bat influenza A-like virus infection, potential future evolutionary trajectories, and intriguing virus-host biology in bat species.


Sign in / Sign up

Export Citation Format

Share Document