scholarly journals Influenza A virus NS1 protein activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by direct interaction with the p85 subunit of PI3K

2007 ◽  
Vol 88 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Yeun-Kyung Shin ◽  
Qiang Liu ◽  
Suresh K. Tikoo ◽  
Lorne A. Babiuk ◽  
Yan Zhou

Influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but the mechanism is not clear. Here, it is reported that influenza A virus NS1 protein is responsible for PI3K/Akt pathway activation. It was demonstrated that the NS1 protein interacts with the p85 regulatory subunit of PI3K via direct binding to the SH3 and C-terminal SH2 domains of p85. Consensus binding motifs for SH3 and SH2 domains were found in influenza A virus NS1, namely an SH2-binding motif (YXXXM) at aa 89, SH3-binding motif 1 (PXXP) around aa 164 and SH3-binding motif 2 around aa 212. Mutant virus encoding NS1 protein with mutations in the SH-binding motifs failed to interact with SH domains of p85 and did not activate the PI3K/Akt pathway. The mutant virus is attenuated in Madin–Darby canine kidney cells. Our study has established a novel function of NS1: by interacting with p85 via the SH-binding motifs, NS1 can activate the PI3K/Akt pathway.

2007 ◽  
Vol 81 (23) ◽  
pp. 12730-12739 ◽  
Author(s):  
Yeun-Kyung Shin ◽  
Yang Li ◽  
Qiang Liu ◽  
Deborah H. Anderson ◽  
Lorne A. Babiuk ◽  
...  

ABSTRACT Recent studies have demonstrated that influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by binding of influenza NS1 protein to the p85 regulatory subunit of PI3K. Our previous study proposed that two polyproline motifs in NS1 (amino acids 164 to 167 [PXXP], SH3 binding motif 1, and amino acids 213 to 216 [PPXXP], SH3 binding motif 2) may mediate binding to the p85 subunit of PI3K. Here we performed individual mutational analyses on these two motifs and demonstrated that SH3 binding motif 1 contributes to the interactions of NS1 with p85β, whereas SH3 binding motif 2 is not required for this process. Mutant viruses carrying NS1 with mutations in SH3 binding motif 1 failed to interact with p85β and induce the subsequent activation of PI3K/Akt pathway. Mutant virus bearing mutations in SH3 binding motif 2 exhibited similar phenotype as the wild-type (WT) virus. Furthermore, viruses with mutations in SH3 binding motif 1 induced more severe apoptosis than did the WT virus. Our data suggest that SH3 binding motif 1 in NS1 protein is required for NS1-p85β interaction and PI3K/Akt activation. Activation of PI3K/Akt pathway is beneficial for virus replication by inhibiting virus induced apoptosis through phosphorylation of caspase-9.


2007 ◽  
Vol 88 (3) ◽  
pp. 942-950 ◽  
Author(s):  
Yeun-Kyung Shin ◽  
Qiang Liu ◽  
Suresh K. Tikoo ◽  
Lorne A. Babiuk ◽  
Yan Zhou

The phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway has attracted much recent interest due to its central role in modulating diverse downstream signalling pathways associated with cell survival, proliferation, differentiation, morphology and apoptosis. An increasing amount of information has demonstrated that many viruses activate the PI3K/Akt pathway to augment their efficient replication. In this study, the effect of the PI3K/Akt signalling pathway on influenza virus propagation was investigated. It was found that Akt phosphorylation was elevated in the late phase of influenza A/PR/8/34 infection in human lung carcinoma cells (A549). The PI3K-specific inhibitor LY294002 could suppress Akt phosphorylation, suggesting that influenza A virus-induced Akt phosphorylation is PI3K-dependent. UV-irradiated influenza virus failed to induce Akt phosphorylation, indicating that viral attachment and entry were not sufficient to trigger PI3K/Akt pathway activation. Blockage of PI3K/Akt activation by LY294002 and overexpression of the general receptor for phosphoinositides-1 PH domain (Grp1-PH) led to a reduction in virus yield. Moreover, in the presence of LY294002, viral RNA synthesis and viral protein expression were suppressed and, possibly as a consequence of low NP and M1 protein level, viral RNP nuclear export was also suppressed. These data suggest that the PI3K/Akt signalling pathway plays a role in influenza virus propagation.


Virology ◽  
2010 ◽  
Vol 396 (1) ◽  
pp. 94-105 ◽  
Author(s):  
David Jackson ◽  
Marian J. Killip ◽  
Caroline S. Galloway ◽  
Rupert J. Russell ◽  
Richard E. Randall

2007 ◽  
Vol 81 (7) ◽  
pp. 3058-3067 ◽  
Author(s):  
Christina Ehrhardt ◽  
Thorsten Wolff ◽  
Stephan Pleschka ◽  
Oliver Planz ◽  
Wiebke Beermann ◽  
...  

ABSTRACT Recently we have shown that influenza A virus infection leads to activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and that this cellular reaction is dependent on the expression of the viral nonstructural protein 1 (NS1). These data also suggested that PI3K activation confers a virus-supporting activity at intermediate stages of the infection cycle. So far it is not known which process is regulated by the kinase that supports virus replication. It is well established that upon infection with influenza A virus, the expression of the viral NS1 keeps the induction of beta interferon and the apoptotic response within a tolerable limit. On a molecular basis, this activity of NS1 has been suggested to preclude the activation of cellular double-stranded RNA receptors as well as impaired modulation of mRNA processing. Here we present a novel mode of action of the NS1 protein to suppress apoptosis induction. NS1 binds to and activates PI3K, which results in the activation of the PI3K effector Akt. This leads to a subsequent inhibition of caspase 9 and glycogen synthase-kinase 3β and limitation of the virus-induced cell death program. Thus, NS1 not only blocks but also activates signaling pathways to ensure efficient virus replication.


2010 ◽  
Vol 84 (24) ◽  
pp. 12761-12770 ◽  
Author(s):  
Sabine Steidle ◽  
Luis Martínez-Sobrido ◽  
Markus Mordstein ◽  
Stefan Lienenklaus ◽  
Adolfo García-Sastre ◽  
...  

ABSTRACT The nonstructural protein NS1 of influenza A virus counteracts the interferon (IFN) system and thereby promotes viral replication. NS1 has acquired different mechanisms to limit induction of IFN. It prevents double-stranded RNA (dsRNA) and RIG-I-mediated activation of interferon regulatory factor 3 (IRF3), and it blocks posttranscriptional processing of cellular mRNAs by binding to the cleavage and polyadenylation specificity factor (CPSF). Using a mouse-adapted A/PR/8/34 virus and reverse genetics to introduce specific mutations in NS1 which eliminate one or both functions, we determined the relative contributions of these two activities of NS1 to viral virulence in mice. We found that a functional RNA-binding motif was required for IFN suppression and virulence. Restoration of CPSF binding in the NS1 protein of wild-type A/PR/8/34 virus, which cannot bind CPSF due to mutations in the central binding motif at positions 103 and 106, resulted in enhanced virulence. Surprisingly, if CPSF binding was abolished by substituting glycine for arginine at position 184 in the classical NS1-CPSF binding motif, the mutant virus replicated much more slowly in mice, although the mutated NS1 protein continued to repress the IFN response very efficiently. Our results show that a functional RNA-binding motif is decisive for NS1 of A/PR/8/34 virus to suppress IFN induction. They further demonstrate that in addition to its contribution to CPSF binding, glycine 184 strongly influences viral virulence by an unknown mechanism which does not involve the IFN system.


2003 ◽  
Vol 77 (24) ◽  
pp. 13257-13266 ◽  
Author(s):  
Nicola R. Donelan ◽  
Christopher F. Basler ◽  
Adolfo García-Sastre

ABSTRACT Previously we found that the amino-terminal region of the NS1 protein of influenza A virus plays a key role in preventing the induction of beta interferon (IFN-β) in virus-infected cells. This region is characterized by its ability to bind to different RNA species, including double-stranded RNA (dsRNA), a known potent inducer of IFNs. In order to investigate whether the NS1 RNA-binding activity is required for its IFN antagonist properties, we have generated a recombinant influenza A virus which expresses a mutant NS1 protein defective in dsRNA binding. For this purpose, we substituted alanines for two basic amino acids within NS1 (R38 and K41) that were previously found to be required for RNA binding. Cells infected with the resulting recombinant virus showed increased IFN-β production, demonstrating that these two amino acids play a critical role in the inhibition of IFN production by the NS1 protein during viral infection. In addition, this virus grew to lower titers than wild-type virus in MDCK cells, and it was attenuated in mice. Interestingly, passaging in MDCK cells resulted in the selection of a mutant virus containing a third mutation at amino acid residue 42 of the NS1 protein (S42G). This mutation did not result in a gain in dsRNA-binding activity by the NS1 protein, as measured by an in vitro assay. Nevertheless, the NS1 R38AK41AS42G mutant virus was able to replicate in MDCK cells to titers close to those of wild-type virus. This mutant virus had intermediate virulence in mice, between those of the wild-type and parental NS1 R38AK41A viruses. These results suggest not only that the IFN antagonist properties of the NS1 protein depend on its ability to bind dsRNA but also that they can be modulated by amino acid residues not involved in RNA binding.


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Carina F. Pereira ◽  
Eliot K. C. Read ◽  
Helen M. Wise ◽  
Maria J. Amorim ◽  
Paul Digard

ABSTRACT Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as previously identified roles in antagonizing the innate immune defenses of the cell and directly upregulating translation of viral mRNAs, it also promotes the nuclear export of the viral late gene mRNAs by acting as an adaptor between the viral mRNAs and the cellular mRNA nuclear export machinery.


2007 ◽  
Vol 81 (21) ◽  
pp. 12097-12100 ◽  
Author(s):  
Christina Ehrhardt ◽  
Thorsten Wolff ◽  
Stephan Ludwig

ABSTRACT Recently it has been shown by several laboratories that the influenza A virus nonstructural protein 1 (A/NS1) binds and activates phosphatidylinositol 3-kinase (PI3K). This function of the protein is likely to prevent premature apoptosis induction during viral propagation. Here we show that the B/NS1 protein completely lacks the capacity to induce PI3K signaling. Thus, PI3K activation is another unique function of A/NS1 that is different from the action of its influenza B virus counterpart.


Sign in / Sign up

Export Citation Format

Share Document