scholarly journals Mobile elements reveal small population size in the ancient ancestors of Homo sapiens

2010 ◽  
Vol 107 (5) ◽  
pp. 2147-2152 ◽  
Author(s):  
Chad D. Huff ◽  
Jinchuan Xing ◽  
Alan R. Rogers ◽  
David Witherspoon ◽  
Lynn B. Jorde

The genealogies of different genetic loci vary in depth. The deeper the genealogy, the greater the chance that it will include a rare event, such as the insertion of a mobile element. Therefore, the genealogy of a region that contains a mobile element is on average older than that of the rest of the genome. In a simple demographic model, the expected time to most recent common ancestor (TMRCA) is doubled if a rare insertion is present. We test this expectation by examining single nucleotide polymorphisms around polymorphic Alu insertions from two completely sequenced human genomes. The estimated TMRCA for regions containing a polymorphic insertion is two times larger than the genomic average (P < <10−30), as predicted. Because genealogies that contain polymorphic mobile elements are old, they are shaped largely by the forces of ancient population history and are insensitive to recent demographic events, such as bottlenecks and expansions. Remarkably, the information in just two human DNA sequences provides substantial information about ancient human population size. By comparing the likelihood of various demographic models, we estimate that the effective population size of human ancestors living before 1.2 million years ago was 18,500, and we can reject all models where the ancient effective population size was larger than 26,000. This result implies an unusually small population for a species spread across the entire Old World, particularly in light of the effective population sizes of chimpanzees (21,000) and gorillas (25,000), which each inhabit only one part of a single continent.

Genetics ◽  
1994 ◽  
Vol 136 (2) ◽  
pp. 685-692 ◽  
Author(s):  
Y X Fu

Abstract A new estimator of the essential parameter theta = 4Ne mu from DNA polymorphism data is developed under the neutral Wright-Fisher model without recombination and population subdivision, where Ne is the effective population size and mu is the mutation rate per locus per generation. The new estimator has a variance only slightly larger than the minimum variance of all possible unbiased estimators of the parameter and is substantially smaller than that of any existing estimator. The high efficiency of the new estimator is achieved by making full use of phylogenetic information in a sample of DNA sequences from a population. An example of estimating theta by the new method is presented using the mitochondrial sequences from an American Indian population.


1989 ◽  
Vol 46 (6) ◽  
pp. 928-931 ◽  
Author(s):  
Jan Hennsng L'abée-Lund

The spawning population of Atlantic salmon, Salmo salar, (mature male parr and adults (anadromous salmon)) were assessed in the River Baevra, central Norway, when the river was treated with rotenone in November 1986. The spawning population of adults consisted of 15 males and 19 females. The spawning population of males consisted of 167 mature male parr per adult male. The effective population size of adults was small; Na = 33.5 individuals. The presence of mature male parr theoretically increased the effective population size to Na = 71.7 individuals. This increase indicated that mature male parr brought the effective population size above a recommended minimum (Na = 50) to ensure long term viability.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1236
Author(s):  
Elisabeth Hempel ◽  
Michael V. Westbury ◽  
José H. Grau ◽  
Alexandra Trinks ◽  
Johanna L. A. Paijmans ◽  
...  

Since the 19th century, the addax (Addax nasomaculatus) has lost approximately 99% of its former range. Along with its close relatives, the blue antelope (Hippotragus leucophaeus) and the scimitar-horned oryx (Oryx dammah), the addax may be the third large African mammal species to go extinct in the wild in recent times. Despite this, the evolutionary history of this critically endangered species remains virtually unknown. To gain insight into the population history of the addax, we used hybridization capture to generate ten complete mitochondrial genomes from historical samples and assembled a nuclear genome. We found that both mitochondrial and nuclear diversity are low compared to other African bovids. Analysis of mitochondrial genomes revealed a most recent common ancestor ~32 kya (95% CI 11–58 kya) and weak phylogeographic structure, indicating that the addax likely existed as a highly mobile, panmictic population across its Sahelo–Saharan range in the past. PSMC analysis revealed a continuous decline in effective population size since ~2 Ma, with short intermediate increases at ~500 and ~44 kya. Our results suggest that the addax went through a major bottleneck in the Late Pleistocene, remaining at low population size prior to the human disturbances of the last few centuries.


2017 ◽  
Author(s):  
John Hawks

AbstractHuman populations have a complex history of introgression and of changing population size. Human genetic variation has been affected by both these processes, so that inference of past population size depends upon the pattern of gene flow and introgression among past populations. One remarkable aspect of human population history as inferred from genetics is a consistent “wave” of larger effective population size, prior to the bottlenecks and expansions of the last 100,000 years. Here I carry out a series of simulations to investigate how introgression and gene flow from genetically divergent ancestral populations affect the inference of ancestral effective population size. Both introgression and gene flow from an extinct, genetically divergent population consistently produce a wave in the history of inferred effective population size. The time and amplitude of the wave reflect the time of origin of the genetically divergent ancestral populations and the strength of introgression or gene flow. These results demonstrate that even small fractions of introgression or gene flow from ancient populations may have large effects on the inference of effective population size.


Genetics ◽  
1997 ◽  
Vol 146 (4) ◽  
pp. 1489-1499 ◽  
Author(s):  
Yun-Xin Fu

A coalescent theory for a sample of DNA sequences from a partially selfing diploid population and an algorithm for simulating such samples are developed in this article. Approximate formulas are given for the expectation and the variance of the number of segregating sites in a sample of k sequences from n individuals. Several new estimators of the important parameters θ = 4Nμ and the selfing rate s, where N and μ are, respectively, the effective population size and the mutation rate per sequence per generation, are proposed and their sampling properties are studied.


BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Sankar Subramanian

Abstract Background It is well known that the effective size of a population (Ne) is one of the major determinants of the amount of genetic variation within the population. However, it is unclear whether the types of genetic variations are also dictated by the effective population size. To examine this, we obtained whole genome data from over 100 populations of the world and investigated the patterns of mutational changes. Results Our results revealed that for low frequency variants, the ratio of AT→GC to GC→AT variants (β) was similar across populations, suggesting the similarity of the pattern of mutation in various populations. However, for high frequency variants, β showed a positive correlation with the effective population size of the populations. This suggests a much higher proportion of high frequency AT→GC variants in large populations (e.g. Africans) compared to those with small population sizes (e.g. Asians). These results imply that the substitution patterns vary significantly between populations. These findings could be explained by the effect of GC-biased gene conversion (gBGC), which favors the fixation of G/C over A/T variants in populations. In large population, gBGC causes high β. However, in small populations, genetic drift reduces the effect of gBGC resulting in reduced β. This was further confirmed by a positive relationship between Ne and β for homozygous variants. Conclusions Our results highlight the huge variation in the types of homozygous and high frequency polymorphisms between world populations. We observed the same pattern for deleterious variants, implying that the homozygous polymorphisms associated with recessive genetic diseases will be more enriched with G or C in populations with large Ne (e.g. Africans) than in populations with small Ne (e.g. Europeans).


2018 ◽  
Author(s):  
Bhavin S. Khatri ◽  
Austin Burt

Estimating recent effective population size is of great importance in characterising and predicting the evolution of natural populations. Methods based on nucleotide diversity may underestimate current day effective population sizes due to historical bottlenecks, whilst methods that reconstruct demographic history typically only detect long-term variations. However, soft selective sweeps, which leave a fingerprint of mutational history by recurrent mutations on independent haplotype backgrounds, holds promise of an estimate more representative of recent population history. Here we present a simple and robust method of estimation based only on knowledge of the number of independent recurrent origins and the current frequency of the beneficial allele in a population sample, independent of the strength of selection and age of the mutation. Using a forward time theoretical framework, we show the mean number of origins is a function of θ = 2Nμ and current allele frequency, through a simple equation, and the distribution is approximately Poisson. This estimate is robust to whether mutants pre-existed before selection arose, and is equally accurate for diploid populations with incomplete dominance. For fast (e.g., seasonal) demographic changes compared to time scale for fixation of the mutant allele, and for moderate peak-to-trough ratios, we show our constant population size estimate can be used to bound the maximum and minimum population size. Applied to the Vgsc gene of Anopheles gambiae, we estimate an effective population size of roughly 6 × 107, and including seasonal demographic oscillations, a minimum effective population size greater than 6 × 106 and a maximum less than 3 × 109.


Author(s):  
Andy Foote ◽  
Rebecca Hooper ◽  
Alana Alexander ◽  
Robin Baird ◽  
Charles Baker ◽  
...  

Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically the probability of inbreeding mediated by mating system and/or population demography. Here, we investigate whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global dataset of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstruct demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We find a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (<1Mb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (>1.5 Mb) were found in low latitude populations and populations of known conservation concern, including a Scottish population, for which 37.8% of the autosomes comprised of ROH >1.5 Mb in length.


Sign in / Sign up

Export Citation Format

Share Document