scholarly journals Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites

2010 ◽  
Vol 108 (2) ◽  
pp. 598-602 ◽  
Author(s):  
M. G. Derebe ◽  
D. B. Sauer ◽  
W. Zeng ◽  
A. Alam ◽  
N. Shi ◽  
...  
1997 ◽  
Vol 110 (5) ◽  
pp. 551-564 ◽  
Author(s):  
Christoph Fahlke ◽  
Christine Dürr ◽  
Alfred L. George

Voltage-gated Cl− channels belonging to the ClC family exhibit unique properties of ion permeation and gating. We functionally probed the conduction pathway of a recombinant human skeletal muscle Cl− channel (hClC-1) expressed both in Xenopus oocytes and in a mammalian cell line by investigating block by extracellular or intracellular I− and related anions. Extracellular and intracellular I− exert blocking actions on hClC-1 currents that are both concentration and voltage dependent. Similar actions were observed for a variety of other halide (Br−) and polyatomic (SCN−, NO3−, CH3SO3−) anions. In addition, I− block is accompanied by gating alterations that differ depending on which side of the membrane the blocker is applied. External I− causes a shift in the voltage-dependent probability that channels exist in three definable kinetic states (fast deactivating, slow deactivating, nondeactivating), while internal I− slows deactivation. These different effects on gating properties can be used to distinguish two functional ion binding sites within the hClC-1 pore. We determined KD values for I− block in three distinct kinetic states and found that binding of I− to hClC-1 is modulated by the gating state of the channel. Furthermore, estimates of electrical distance for I− binding suggest that conformational changes affecting the two ion binding sites occur during gating transitions. These results have implications for understanding mechanisms of ion selectivity in hClC-1, and for defining the intimate relationship between gating and permeation in ClC channels.


1991 ◽  
Vol 23 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Masato Nanasawa ◽  
Takahiro Nishiyama ◽  
Hiroyoshi Kamogawa

1981 ◽  
Author(s):  
R M Lewis ◽  
H M Reisner ◽  
B C Abels ◽  
H R Roberts

Affinity chromatography of an inhibitor to human factor IX (F.IX) separated the antibody into two populations. The ion dependent population of antibodies had an absolute divalent cation (Me++) binding requirement. The non-ion dependent population bound F.IX equally in the presence or absence of Me++. The concentration of Me++ required for ½ the maximum ion dependent antibody binding (½ max) was (in nM) Ca++ 0.40, Mn++ 0.05, Sr++ 0.70 and Mg++ 0.65.Ca++ potentiated the binding of antibody in the presence of excess Mg++. In addition, the ½ max for Ca++ was reduced about four fold. These observations are consistent with separate binding sites on the F.IX molecule for Ca++ and Mg++ and potentiation of Ca++ binding by Mg++. Scat- chard analysis of ion dependent antibody binding indicates about a 10 fold greater affinity of antibody in the presence of Ca++ than Mg++. In the presence of both cations, affinity was at least as high as in the presence of Ca++ alone supporting the presence of separate ion binding sites on the F.IX molecule.


Sign in / Sign up

Export Citation Format

Share Document