scholarly journals Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load

2012 ◽  
Vol 110 (1) ◽  
pp. 222-227 ◽  
Author(s):  
S. Wielgoss ◽  
J. E. Barrick ◽  
O. Tenaillon ◽  
M. J. Wiser ◽  
W. J. Dittmar ◽  
...  
2018 ◽  
Author(s):  
Dalit Engelhardt ◽  
Eugene I. Shakhnovich

Mutation rate is a key determinant of the pace as well as outcome of evolution, and variability in this rate has been shown in different scenarios to play a key role in evolutionary adaptation and resistance evolution under stress. Here we investigate the dynamics of resistance fixation in a bacterial population with variable mutation rates and show that evolutionary outcomes are most sensitive to mutation rate variations when the population is subject to environmental and demographic conditions that suppress the evolutionary advantage of high-fitness subpopulations. By directly mapping a molecular-level biophysical fitness function to the system-level dynamics of the population we show that both low and very high, but not intermediate, levels of stress result in a disproportionate effect of hypermutation on resistance fixation and that traditional definitions of the selection coefficient are insufficient to account for this effect. We demonstrate how this behavior is directly tied to the extent of genetic hitchhiking in the system, the propagation of high-mutation rate cells through association with high-fitness mutations. Our results indicate a substantial role for mutation rate flexibility in the evolution of antibiotic resistance under conditions that present a weak advantage over wildtype to resistant cells.


2010 ◽  
Vol 365 (1548) ◽  
pp. 1953-1963 ◽  
Author(s):  
Guillaume Martin ◽  
Sylvain Gandon

The lethal mutagenesis hypothesis states that within-host populations of pathogens can be driven to extinction when the load of deleterious mutations is artificially increased with a mutagen, and becomes too high for the population to be maintained. Although chemical mutagens have been shown to lead to important reductions in viral titres for a wide variety of RNA viruses, the theoretical underpinnings of this process are still not clearly established. A few recent models sought to describe lethal mutagenesis but they often relied on restrictive assumptions. We extend this earlier work in two novel directions. First, we derive the dynamics of the genetic load in a multivariate Gaussian fitness landscape akin to classical quantitative genetics models. This fitness landscape yields a continuous distribution of mutation effects on fitness, ranging from deleterious to beneficial (i.e. compensatory) mutations. We also include an additional class of lethal mutations. Second, we couple this evolutionary model with an epidemiological model accounting for the within-host dynamics of the pathogen. We derive the epidemiological and evolutionary equilibrium of the system. At this equilibrium, the density of the pathogen is expected to decrease linearly with the genomic mutation rate U . We also provide a simple expression for the critical mutation rate leading to extinction. Stochastic simulations show that these predictions are accurate for a broad range of parameter values. As they depend on a small set of measurable epidemiological and evolutionary parameters, we used available information on several viruses to make quantitative and testable predictions on critical mutation rates. In the light of this model, we discuss the feasibility of lethal mutagenesis as an efficient therapeutic strategy.


Genetics ◽  
1972 ◽  
Vol 72 (2) ◽  
pp. 335-355
Author(s):  
Terumi Mukai ◽  
Sadao I Chigusa ◽  
L E Mettler ◽  
James F Crow

ABSTRACT Spontaneous mutations were allowed to accumulate in a second chromosome that was transmitted only through heterozygous males for 40 generations. At 10-generation intervals the chromosomes were assayed for homozygous effects of the accumulated mutants. From the regression of homozygous viability on the number of generations of mutant accumulation and from the increase in genetic variance between replicate chromosomes it is possible to estimate the mutation rate and average effect of the individual mutants. Lethal mutations arose at a rate of 0.0060 per chromosome per generation. The mutants having small effects on viability are estimated to arise with a frequency at least 10 times as high as lethals, more likely 20 times as high, and possibly many more times as high if there is a large class of very nearly neutral mutations.—The dominance of such mutants was measured for chromosomes extracted from a natural population. This was determined from the regression of heterozygous viability on that of the sum of the two constituent homozygotes. The average dominance for minor viability genes in an equilibrium population was estimated to be 0.21. This is lower than the value for new mutants, as expected since those with the greatest heterozygous effect are most quickly eliminated from the population. That these mutants have a disproportionately large heterozygous effect on total fitness (as well as on the viability component thereof) is shown by the low ratio of the genetic load in equilibrium homozygotes to that of new mutant homozygotes.


1967 ◽  
Vol 9 (1) ◽  
pp. 23-34 ◽  
Author(s):  
Motoo Kimura

Evolutionary factors which tend to decrease the mutation rate through natural selection and those which tend to increase the mutation rate are discussed from the standpoint of population genetics. The author's theory of optimum mutation rate based on the principle of minimum genetic load is re-examined, assuming that mutation rate is adjusted in the course of evolution in such a way that the sum of mutational and substitutional load is minimized. Another hypothesis is also examined that only selection toward lowering the mutation rate is effective and the present mutation rate in each organism represents the physical or physiological limit that may be attained by natural selection.The possibility cannot be excluded that the spontaneous mutation rate is near the minimum that may be attained under the present mode of organization of the genetic material, and at the same time is not very far from the optimum in the sense of minimizing the genetic load.


2021 ◽  
Author(s):  
Dorien Wilmaerts ◽  
Charline Focant ◽  
Paul Matthay ◽  
Jan Michiels

Persisters constitute a population of temporarily antibiotic-tolerant variants in an isogenic bacterial population and are considered an important cause of relapsing infections. It is currently unclear how cellular damage inflicted by antibiotic action is reversed upon persister state exit and how this relates to antibiotic resistance development. We demonstrate that persisters, upon fluoroquinolone treatment, accumulate oxidative damage which is repaired through nucleotide excision repair. Detection of the damage occurs via transcription-coupled repair using UvrD-mediated backtracking or Mfd-mediated displacement of the RNA polymerase. This competition results in heterogeneity in persister awakening lags. Most persisters repair the oxidative DNA damage, displaying a mutation rate equal to the untreated population. However, the promutagenic factor Mfd increases the mutation rate in a persister subpopulation. Our data provide in-depth insight in the molecular mechanisms underlying persister survival and pinpoints Mfd as an important molecular factor linking persistence to resistance development.


2017 ◽  
Vol 4 (2) ◽  
pp. 87-91
Author(s):  
Ekamaida Ekamaida

The soil fertility aspect is characterized by the good biological properties of the soil. One important element of the soil biological properties is the bacterial population present in it. This research was conducted in the laboratory of Microbiology University of Malikussaleh in the May until June 2016. This study aims to determine the number of bacterial populations in soil organic and inorganic so that can be used as an indicator to know the level of soil fertility. Data analysis was done by T-Test that is by comparing the mean of observation parameter to each soil sample. The sampling method used is a composite method, which combines 9 of soil samples taken from 9 sample points on the same plot diagonally both on organic soil and inorganic soil. The results showed the highest bacterial population was found in total organic soil cfu 180500000 and total inorganic soil cfu 62.500.000


Sign in / Sign up

Export Citation Format

Share Document