scholarly journals Host plant peptides elicit a transcriptional response to control theSinorhizobium meliloticell cycle during symbiosis

2014 ◽  
Vol 111 (9) ◽  
pp. 3561-3566 ◽  
Author(s):  
Jon Penterman ◽  
Ryan P. Abo ◽  
Nicole J. De Nisco ◽  
Markus F. F. Arnold ◽  
Renato Longhi ◽  
...  
2020 ◽  
Author(s):  
Camilla Fagorzi ◽  
Giovanni Bacci ◽  
Rui Huang ◽  
Lisa Cangioli ◽  
Alice Checcucci ◽  
...  

AbstractRhizobia are ecologically important, facultative plant symbiotic microbes. In nature there exists large variability in the association of rhizobial strains and host plant of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of host plant. RNA-sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin was performed in a combination of three S. meliloti strains and three Medicago sativa varieties. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, expression of 35% were influenced by strain genotype, 16% by the plant genotype, and 29% by strain x host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain, in which the symbiotic megaplasmid (~ 20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes resulted up-regulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes is influenced by the genotypes of both symbiotic partners, and their interaction, suggesting a wide genetic spectrum of partner choice selection in plant-rhizobium symbiosis.


2019 ◽  
Author(s):  
Wen-Hao Tan ◽  
Tarik Acevedo ◽  
Erica V. Harris ◽  
Tiffanie Y. Alcaide ◽  
James R. Walters ◽  
...  

ABSTRACTHerbivorous insects have evolved many mechanisms to overcome plant chemical defenses, including detoxification and sequestration. Herbivores may also use toxic plants to reduce parasite infection. Plant toxins could directly interfere with parasites or could enhance endogenous immunity. Alternatively, plant toxins could favor down-regulation of endogenous immunity by providing an alternative (exogenous) defense against parasitism. However, studies on genome-wide transcriptomic responses to plant defenses and the interplay between host plant toxicity and parasite infection remain rare. Monarch butterflies (Danaus plexippus) are specialist herbivores that feed on milkweeds (Asclepias spp.), which contain toxic cardenolides. Monarchs have adapted to cardenolides through multiple resistance mechanisms and can sequester cardenolides to defend against bird predators. In addition, high-cardenolide milkweeds confer medicinal effects to monarchs against a specialist protozoan parasite (Ophryocystis elektroscirrha). We used this system to study the interplay between the effects of plant toxicity and parasite infection on global gene expression. Our results demonstrate that monarch larvae differentially express several hundred genes when feeding on A. curassavica and A. incarnata, two species that are similar in nutritional content but differ substantially in cardenolide concentrations. These differentially expressed genes include genes within multiple families of canonical insect detoxification genes, suggesting that they play a role in monarch toxin resistance and sequestration. Interestingly, we found little transcriptional response to infection. However, parasite growth was reduced in monarchs reared on A. curassavica, and in these monarchs, a small number of immune genes were down-regulated, consistent with the hypothesis that medicinal plants can reduce reliance on endogenous immunity.


ENTOMON ◽  
2020 ◽  
Vol 45 (3) ◽  
pp. 237-238
Author(s):  
J. Nayanathara ◽  
R. Narayana
Keyword(s):  
New Host ◽  

Anthene lycaenina lycaenina (R. Felder, 1868) is reported on mango for the first time.


2019 ◽  
Vol 16 (1) ◽  
pp. 12-15
Author(s):  
M.D. Zerova ◽  
A. Al-Sendi ◽  
V.N. Fursov ◽  
H. Adeli-Manesh ◽  
S.E. Sadeghi ◽  
...  

The new species, Bruchophagus ayadi sp.n., is reared from seed pods of Melilotus officinalis (L.) Desr. (Fabaceae) in Iran (Lorestan). The new species is close to B. platypterus (Walk.), but differs by roundish abdomen and very gibbous, almost globular (in lateral view) mesosoma. These species can be also differentiated by some biological features. The host plant of B. platypterus is Lotus corniculatus L., whereas the new species is reared from Melilotus officinalis (L.) Desr. Holotype of Bruchophagus ayadi sp.n. is deposited in the collection of I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine (Kyiv).


Sign in / Sign up

Export Citation Format

Share Document