scholarly journals Correction for Lu et al., Label-free DNA imaging in vivo with stimulated Raman scattering microscopy

2015 ◽  
Vol 112 (43) ◽  
pp. E5902-E5902 ◽  
2015 ◽  
Vol 112 (37) ◽  
pp. 11624-11629 ◽  
Author(s):  
Fa-Ke Lu ◽  
Srinjan Basu ◽  
Vivien Igras ◽  
Mai P. Hoang ◽  
Minbiao Ji ◽  
...  

Label-free DNA imaging is highly desirable in biology and medicine to perform live imaging without affecting cell function and to obtain instant histological tissue examination during surgical procedures. Here we show a label-free DNA imaging method with stimulated Raman scattering (SRS) microscopy for visualization of the cell nuclei in live animals and intact fresh human tissues with subcellular resolution. Relying on the distinct Raman spectral features of the carbon-hydrogen bonds in DNA, the distribution of DNA is retrieved from the strong background of proteins and lipids by linear decomposition of SRS images at three optimally selected Raman shifts. Based on changes on DNA condensation in the nucleus, we were able to capture chromosome dynamics during cell division both in vitro and in vivo. We tracked mouse skin cell proliferation, induced by drug treatment, through in vivo counting of the mitotic rate. Furthermore, we demonstrated a label-free histology method for human skin cancer diagnosis that provides comparable results to other conventional tissue staining methods such as H&E. Our approach exhibits higher sensitivity than SRS imaging of DNA in the fingerprint spectral region. Compared with spontaneous Raman imaging of DNA, our approach is three orders of magnitude faster, allowing both chromatin dynamic studies and label-free optical histology in real time.


2019 ◽  
Vol 63 (5) ◽  
pp. 2028-2034 ◽  
Author(s):  
Kristel Sepp ◽  
Martin Lee ◽  
Marie T. J. Bluntzer ◽  
G. Vignir Helgason ◽  
Alison N. Hulme ◽  
...  

2019 ◽  
Vol 116 (32) ◽  
pp. 15842-15848 ◽  
Author(s):  
Yuta Suzuki ◽  
Koya Kobayashi ◽  
Yoshifumi Wakisaka ◽  
Dinghuan Deng ◽  
Shunji Tanaka ◽  
...  

Combining the strength of flow cytometry with fluorescence imaging and digital image analysis, imaging flow cytometry is a powerful tool in diverse fields including cancer biology, immunology, drug discovery, microbiology, and metabolic engineering. It enables measurements and statistical analyses of chemical, structural, and morphological phenotypes of numerous living cells to provide systematic insights into biological processes. However, its utility is constrained by its requirement of fluorescent labeling for phenotyping. Here we present label-free chemical imaging flow cytometry to overcome the issue. It builds on a pulse pair-resolved wavelength-switchable Stokes laser for the fastest-to-date multicolor stimulated Raman scattering (SRS) microscopy of fast-flowing cells on a 3D acoustic focusing microfluidic chip, enabling an unprecedented throughput of up to ∼140 cells/s. To show its broad utility, we use the SRS imaging flow cytometry with the aid of deep learning to study the metabolic heterogeneity of microalgal cells and perform marker-free cancer detection in blood.


Sign in / Sign up

Export Citation Format

Share Document